## Constructing fully symmetric cubature formulae for the sphere

HTML articles powered by AMS MathViewer

- by Sangwoo Heo and Yuan Xu;
- Math. Comp.
**70**(2001), 269-279 - DOI: https://doi.org/10.1090/S0025-5718-00-01198-4
- Published electronically: March 3, 2000
- PDF | Request permission

## Abstract:

We construct symmetric cubature formulae of degrees in the 13-39 range for the surface measure on the unit sphere. We exploit a recently published correspondence between cubature formulae on the sphere and on the triangle. Specifically, a fully symmetric cubature formula for the surface measure on the unit sphere corresponds to a symmetric cubature formula for the triangle with weight function $(u_{1}u_{2}u_{3})^{-1/2}$, where $u_{1}$, $u_{2}$, and $u_{3}$ are homogeneous coordinates.## References

- Louis E. Rosier,
*A note on Presburger arithmetic with array segments, permutation and equality*, Inform. Process. Lett.**22**(1986), no. 1, 33–35. MR**825644**, DOI 10.1016/0020-0190(86)90039-6 - R. Cools and P. Rabinowitz,
*Monomial cubature rules since “Stroud”: a compilation*, J. Comp. Appl. Math.**48**(1993), 309-326. - D. A. Dunavant,
*High degree efficient symmetrical Gaussian quadrature rules for the triangle*, Internat. J. Numer. Methods Engrg.**21**(1985), no. 6, 1129–1148. MR**794241**, DOI 10.1002/nme.1620210612 - H. Engels,
*Numerical quadrature and cubature*, Computational Mathematics and Applications, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1980. MR**587486** - S. Heo and Y. Xu,
*Constructing cubature formulae for spheres and balls*, J. Comp. Appl. Math.**12**(1999), 95–119. . - S. Heo and Y. Xu,
*Constructing cubature formulae for spheres and triangles*, Technical Report, University of Oregon, 1998. - Patrick Keast,
*Cubature formulas for the surface of the sphere*, J. Comput. Appl. Math.**17**(1987), no. 1-2, 151–172. MR**884267**, DOI 10.1016/0377-0427(87)90044-6 - Patrick Keast,
*Moderate-degree tetrahedral quadrature formulas*, Comput. Methods Appl. Mech. Engrg.**55**(1986), no. 3, 339–348. MR**844909**, DOI 10.1016/0045-7825(86)90059-9 - Patrick Keast and Julio C. Díaz,
*Fully symmetric integration formulas for the surface of the sphere in $S$ dimensions*, SIAM J. Numer. Anal.**20**(1983), no. 2, 406–419. MR**694529**, DOI 10.1137/0720029 - V. I. Lebedev,
*Quadratures on the sphere*, Ž. Vyčisl. Mat i Mat. Fiz.**16**(1976), no. 2, 293–306, 539 (Russian). MR**438670** - V. I. Lebedev,
*Quadrature formulas for the sphere of 25th to 29th order accuracy*, Sibirsk. Mat. Ž.**18**(1977), no. 1, 132–142, 239 (Russian). MR**448821** - V.I. Lebedev,
*A quadrature formula for the sphere of 59th algebraic order of accuracy*, Russian Acad. Sci. Dokl. Math.**50**(1995), 283-286. - V. I. Lebedev and A. L. Skorokhodov,
*Quadrature formulas for a sphere of orders $41,\;47$ and $53$*, Dokl. Akad. Nauk**324**(1992), no. 3, 519–524 (Russian); English transl., Russian Acad. Sci. Dokl. Math.**45**(1992), no. 3, 587–592 (1993). MR**1198576** - J. N. Lyness and Ronald Cools,
*A survey of numerical cubature over triangles*, Mathematics of Computation 1943–1993: a half-century of computational mathematics (Vancouver, BC, 1993) Proc. Sympos. Appl. Math., vol. 48, Amer. Math. Soc., Providence, RI, 1994, pp. 127–150. MR**1314845**, DOI 10.1090/psapm/048/1314845 - J. N. Lyness and D. Jespersen,
*Moderate degree symmetric quadrature rules for the triangle*, J. Inst. Math. Appl.**15**(1975), 19–32. MR**378368**, DOI 10.1093/imamat/15.1.19 - J. I. Maeztu and E. Sáinz de la Maza,
*Consistent structures of invariant quadrature rules for the $n$-simplex*, Math. Comp.**64**(1995), no. 211, 1171–1192. MR**1297473**, DOI 10.1090/S0025-5718-1995-1297473-8 - A. D. McLaren,
*Optimal numerical integration on a sphere*, Math. Comp.**17**(1963), 361–383. MR**159418**, DOI 10.1090/S0025-5718-1963-0159418-2 - I. P. Mysovskikh,
*Interpolyatsionnye kubaturnye formuly*, “Nauka”, Moscow, 1981 (Russian). MR**656522** - S. L. Sobolev,
*Cubature formulas on the sphere which are invariant under transformations of finite rotation groups*, Dokl. Akad. Nauk SSSR**146**(1962), 310–313 (Russian). MR**141225** - A. H. Stroud,
*Approximate calculation of multiple integrals*, Prentice-Hall Series in Automatic Computation, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1971. MR**327006** - Yuan Xu,
*On orthogonal polynomials in several variables*, Special functions, $q$-series and related topics (Toronto, ON, 1995) Fields Inst. Commun., vol. 14, Amer. Math. Soc., Providence, RI, 1997, pp. 247–270. MR**1448689** - Zdzisław Lewandowski and Jan Szynal,
*An upper bound for the Laguerre polynomials*, Proceedings of the VIIIth Symposium on Orthogonal Polynomials and Their Applications (Seville, 1997), 1998, pp. 529–533. MR**1662719**, DOI 10.1016/S0377-0427(98)00181-2 - Y. Xu,
*Orthogonal polynomials and cubature formulae on spheres and on simplices*, Methods Appl. Anal.**5**(1998), 169-184.

## Bibliographic Information

**Sangwoo Heo**- Affiliation: Department of Mathematics, University of Oregon, Eugene, Oregon 97403-1222
- Email: yuan@math.uoregon.edu
**Yuan Xu**- Affiliation: Division of Science and Mathematics, University of Minnesota-Morris, Morris, Minnesota 56267
- Address at time of publication: Department of Mathematics, University of Southern Indiana, Evansville, Indiana 47712
- MR Author ID: 227532
- Email: sheo@cda.mrs.umn.edu
- Received by editor(s): July 8, 1997
- Received by editor(s) in revised form: February 6, 1998, July 14, 1998, and January 12, 1999
- Published electronically: March 3, 2000
- Additional Notes: Supported by the National Science Foundation under Grants DMS-9500532 and 9802265.
- © Copyright 2000 American Mathematical Society
- Journal: Math. Comp.
**70**(2001), 269-279 - MSC (2000): Primary 65D32, 41A55, 41A63
- DOI: https://doi.org/10.1090/S0025-5718-00-01198-4
- MathSciNet review: 1680883