Constructing fully symmetric cubature formulae for the sphere
HTML articles powered by AMS MathViewer
- by Sangwoo Heo and Yuan Xu;
- Math. Comp. 70 (2001), 269-279
- DOI: https://doi.org/10.1090/S0025-5718-00-01198-4
- Published electronically: March 3, 2000
- PDF | Request permission
Abstract:
We construct symmetric cubature formulae of degrees in the 13-39 range for the surface measure on the unit sphere. We exploit a recently published correspondence between cubature formulae on the sphere and on the triangle. Specifically, a fully symmetric cubature formula for the surface measure on the unit sphere corresponds to a symmetric cubature formula for the triangle with weight function $(u_{1}u_{2}u_{3})^{-1/2}$, where $u_{1}$, $u_{2}$, and $u_{3}$ are homogeneous coordinates.References
- Louis E. Rosier, A note on Presburger arithmetic with array segments, permutation and equality, Inform. Process. Lett. 22 (1986), no. 1, 33–35. MR 825644, DOI 10.1016/0020-0190(86)90039-6
- R. Cools and P. Rabinowitz, Monomial cubature rules since “Stroud”: a compilation, J. Comp. Appl. Math. 48 (1993), 309-326.
- D. A. Dunavant, High degree efficient symmetrical Gaussian quadrature rules for the triangle, Internat. J. Numer. Methods Engrg. 21 (1985), no. 6, 1129–1148. MR 794241, DOI 10.1002/nme.1620210612
- H. Engels, Numerical quadrature and cubature, Computational Mathematics and Applications, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1980. MR 587486
- S. Heo and Y. Xu, Constructing cubature formulae for spheres and balls, J. Comp. Appl. Math. 12 (1999), 95–119. .
- S. Heo and Y. Xu, Constructing cubature formulae for spheres and triangles, Technical Report, University of Oregon, 1998.
- Patrick Keast, Cubature formulas for the surface of the sphere, J. Comput. Appl. Math. 17 (1987), no. 1-2, 151–172. MR 884267, DOI 10.1016/0377-0427(87)90044-6
- Patrick Keast, Moderate-degree tetrahedral quadrature formulas, Comput. Methods Appl. Mech. Engrg. 55 (1986), no. 3, 339–348. MR 844909, DOI 10.1016/0045-7825(86)90059-9
- Patrick Keast and Julio C. Díaz, Fully symmetric integration formulas for the surface of the sphere in $S$ dimensions, SIAM J. Numer. Anal. 20 (1983), no. 2, 406–419. MR 694529, DOI 10.1137/0720029
- V. I. Lebedev, Quadratures on the sphere, Ž. Vyčisl. Mat i Mat. Fiz. 16 (1976), no. 2, 293–306, 539 (Russian). MR 438670
- V. I. Lebedev, Quadrature formulas for the sphere of 25th to 29th order accuracy, Sibirsk. Mat. Ž. 18 (1977), no. 1, 132–142, 239 (Russian). MR 448821
- V.I. Lebedev, A quadrature formula for the sphere of 59th algebraic order of accuracy, Russian Acad. Sci. Dokl. Math. 50 (1995), 283-286.
- V. I. Lebedev and A. L. Skorokhodov, Quadrature formulas for a sphere of orders $41,\;47$ and $53$, Dokl. Akad. Nauk 324 (1992), no. 3, 519–524 (Russian); English transl., Russian Acad. Sci. Dokl. Math. 45 (1992), no. 3, 587–592 (1993). MR 1198576
- J. N. Lyness and Ronald Cools, A survey of numerical cubature over triangles, Mathematics of Computation 1943–1993: a half-century of computational mathematics (Vancouver, BC, 1993) Proc. Sympos. Appl. Math., vol. 48, Amer. Math. Soc., Providence, RI, 1994, pp. 127–150. MR 1314845, DOI 10.1090/psapm/048/1314845
- J. N. Lyness and D. Jespersen, Moderate degree symmetric quadrature rules for the triangle, J. Inst. Math. Appl. 15 (1975), 19–32. MR 378368, DOI 10.1093/imamat/15.1.19
- J. I. Maeztu and E. Sáinz de la Maza, Consistent structures of invariant quadrature rules for the $n$-simplex, Math. Comp. 64 (1995), no. 211, 1171–1192. MR 1297473, DOI 10.1090/S0025-5718-1995-1297473-8
- A. D. McLaren, Optimal numerical integration on a sphere, Math. Comp. 17 (1963), 361–383. MR 159418, DOI 10.1090/S0025-5718-1963-0159418-2
- I. P. Mysovskikh, Interpolyatsionnye kubaturnye formuly, “Nauka”, Moscow, 1981 (Russian). MR 656522
- S. L. Sobolev, Cubature formulas on the sphere which are invariant under transformations of finite rotation groups, Dokl. Akad. Nauk SSSR 146 (1962), 310–313 (Russian). MR 141225
- A. H. Stroud, Approximate calculation of multiple integrals, Prentice-Hall Series in Automatic Computation, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1971. MR 327006
- Yuan Xu, On orthogonal polynomials in several variables, Special functions, $q$-series and related topics (Toronto, ON, 1995) Fields Inst. Commun., vol. 14, Amer. Math. Soc., Providence, RI, 1997, pp. 247–270. MR 1448689
- Zdzisław Lewandowski and Jan Szynal, An upper bound for the Laguerre polynomials, Proceedings of the VIIIth Symposium on Orthogonal Polynomials and Their Applications (Seville, 1997), 1998, pp. 529–533. MR 1662719, DOI 10.1016/S0377-0427(98)00181-2
- Y. Xu, Orthogonal polynomials and cubature formulae on spheres and on simplices, Methods Appl. Anal. 5 (1998), 169-184.
Bibliographic Information
- Sangwoo Heo
- Affiliation: Department of Mathematics, University of Oregon, Eugene, Oregon 97403-1222
- Email: yuan@math.uoregon.edu
- Yuan Xu
- Affiliation: Division of Science and Mathematics, University of Minnesota-Morris, Morris, Minnesota 56267
- Address at time of publication: Department of Mathematics, University of Southern Indiana, Evansville, Indiana 47712
- MR Author ID: 227532
- Email: sheo@cda.mrs.umn.edu
- Received by editor(s): July 8, 1997
- Received by editor(s) in revised form: February 6, 1998, July 14, 1998, and January 12, 1999
- Published electronically: March 3, 2000
- Additional Notes: Supported by the National Science Foundation under Grants DMS-9500532 and 9802265.
- © Copyright 2000 American Mathematical Society
- Journal: Math. Comp. 70 (2001), 269-279
- MSC (2000): Primary 65D32, 41A55, 41A63
- DOI: https://doi.org/10.1090/S0025-5718-00-01198-4
- MathSciNet review: 1680883