Enumerating solutions to $p(a)+q(b)=r(c)+s(d)$
HTML articles powered by AMS MathViewer
- by Daniel J. Bernstein;
- Math. Comp. 70 (2001), 389-394
- DOI: https://doi.org/10.1090/S0025-5718-00-01219-9
- Published electronically: June 12, 2000
Abstract:
Let $p,q,r,s$ be polynomials with integer coefficients. This paper presents a fast method, using very little temporary storage, to find all small integers $(a,b,c,d)$ satisfying $p(a)+q(b)=r(c)+s(d)$. Numerical results include all small solutions to $a^4+b^4+c^4=d^4$; all small solutions to $a^4+b^4=c^4+d^4$; and the smallest positive integer that can be written in $5$ ways as a sum of two coprime cubes.References
- Svante Carlsson, Average-case results on Heapsort, BIT 27 (1987), no.Β 1, 2β17. MR 874856, DOI 10.1007/BF01937350
- Randy L. Ekl, Equal sums of four seventh powers, Math. Comp. 65 (1996), no.Β 216, 1755β1756. MR 1361807, DOI 10.1090/S0025-5718-96-00768-5
- Randy L. Ekl, New results in equal sums of like powers, Math. Comp. 67 (1998), no.Β 223, 1309β1315. MR 1474650, DOI 10.1090/S0025-5718-98-00979-X
- Noam D. Elkies, On $A^4+B^4+C^4=D^4$, Math. Comp. 51 (1988), no.Β 184, 825β835. MR 930224, DOI 10.1090/S0025-5718-1988-0930224-9
- Robert W. Floyd, Algorithm 245: Treesort3, Communications of the ACM 7 (1964), 701.
- Roger E. Frye, Finding $95800^4+217519^4+414560^4=422481^4$ on the Connection Machine, in [Joanne L. Martin, Stephen F. Lundstrom, Supercomputing β88: proceedings, volume 2, IEEE Computer Society Press, Silver Spring, Maryland, 1988], 106β116.
- Richard K. Guy, Unsolved problems in number theory, 2nd ed., Problem Books in Mathematics, Springer-Verlag, New York, 1994. Unsolved Problems in Intuitive Mathematics, I. MR 1299330, DOI 10.1007/978-1-4899-3585-4
- D. R. Heath-Brown, The density of zeros of forms for which weak approximation fails, Math. Comp. 59 (1992), no.Β 200, 613β623. MR 1146835, DOI 10.1090/S0025-5718-1992-1146835-5
- Donald E. Knuth, The art of computer programming. Volume 3, Addison-Wesley Series in Computer Science and Information Processing, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1973. Sorting and searching. MR 445948
- Donald E. Knuth, The art of computer programming, volume 3: sorting and searching, second edition, Addison-Wesley, Reading, Massachusetts, 1998.
- Leon J. Lander, Thomas R. Parkin, Equal sums of biquadrates, Mathematics of Computation 20 (1966), 450β451.
- L. J. Lander and T. R. Parkin, A counterexample to Eulerβs sum of powers conjecture, Math. Comp. 21 (1967), 101β103. MR 220669, DOI 10.1090/S0025-5718-1967-0220669-3
- L. J. Lander, T. R. Parkin, and J. L. Selfridge, A survey of equal sums of like powers, Math. Comp. 21 (1967), 446β459. MR 222008, DOI 10.1090/S0025-5718-1967-0222008-0
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771β782. MR 19, DOI 10.2307/2371335
- Joanne L. Martin, Stephen F. Lundstrom, Supercomputing β88: proceedings, volume 2, IEEE Computer Society Press, Silver Spring, Maryland, 1988.
- Emmanuel Peyre, Yuri Tschinkel, Tamagawa numbers of diagonal cubic surfaces, numerical evidence, this journal, previous article.
- E. Rosenstiel, J. A. Dardis, and C. R. Rosenstiel, The four least solutions in distinct positive integers of the Diophantine equation $s=x^3+y^3=z^3+w^3=u^3+v^3=m^3+n^3$, Bull. Inst. Math. Appl. 27 (1991), no.Β 7, 155β157. MR 1125858
- Joseph H. Silverman, Integer points and the rank of Thue elliptic curves, Invent. Math. 66 (1982), no.Β 3, 395β404. MR 662599, DOI 10.1007/BF01389220
- Joseph H. Silverman, Integer points on curves of genus $1$, J. London Math. Soc. (2) 28 (1983), no.Β 1, 1β7. MR 703458, DOI 10.1112/jlms/s2-28.1.1
- Morgan Ward, Ring homomorphisms which are also lattice homomorphisms, Amer. J. Math. 61 (1939), 783β787. MR 10, DOI 10.2307/2371336
- B. Rovan (ed.), 15th International Symposium on Mathematical Foundations of Computer Science (MFCS β90), Elsevier B. V., Amsterdam, 1993. Papers from the symposium held in BanskΓ‘ Bystrica, August 27β31, 1990; Theoret. Comput. Sci. 118 (1993), no. 1. MR 1238781
- John W. J. Williams, Algorithm 232: Heapsort, Communications of the ACM 7 (1964), 347β348.
- Aurel J. Zajta, Solutions of the Diophantine equation $A^{4}+B^{4}=C^{4}+D^{4}$, Math. Comp. 41 (1983), no.Β 164, 635β659. MR 717709, DOI 10.1090/S0025-5718-1983-0717709-0
Bibliographic Information
- Daniel J. Bernstein
- Affiliation: Department of Mathematics, Statistics, and Computer Science (M/C 249) The University of Illinois at Chicago, Chicago, IL 60607β7045
- Email: djb@pobox.com
- Received by editor(s): July 10, 1998
- Received by editor(s) in revised form: January 4, 1999
- Published electronically: June 12, 2000
- Additional Notes: The author was supported by the National Science Foundation under grant DMSβ9600083.
- © Copyright 2000 D. J. Bernstein
- Journal: Math. Comp. 70 (2001), 389-394
- MSC (2000): Primary 11Y50; Secondary 11D25, 11D41, 11P05, 11Y16
- DOI: https://doi.org/10.1090/S0025-5718-00-01219-9
- MathSciNet review: 1709145