A new class of radial basis functions with compact support
HTML articles powered by AMS MathViewer
- by M. D. Buhmann;
- Math. Comp. 70 (2001), 307-318
- DOI: https://doi.org/10.1090/S0025-5718-00-01251-5
- Published electronically: March 16, 2000
- PDF | Request permission
Abstract:
Radial basis functions are well-known and successful tools for the interpolation of data in many dimensions. Several radial basis functions of compact support that give rise to nonsingular interpolation problems have been proposed, and in this paper we study a new, larger class of smooth radial functions of compact support which contains other compactly supported ones that were proposed earlier in the literature.References
- M. D. Buhmann, Cardinal interpolation with radial basis functions: an integral transform approach, Multivariate approximation theory, IV (Oberwolfach, 1989) Internat. Ser. Numer. Math., vol. 90, Birkhäuser, Basel, 1989, pp. 41–64. MR 1034295
- Martin D. Buhmann and Charles A. Micchelli, Multiply monotone functions for cardinal interpolation, Adv. in Appl. Math. 12 (1991), no. 3, 358–386. MR 1117997, DOI 10.1016/0196-8858(91)90018-E
- M. D. Buhmann, Radial functions on compact support, Proc. Edinburgh Math. Soc. (2) 41 (1998), no. 1, 33–46. MR 1604361, DOI 10.1017/S0013091500019416
- George Gasper, Positive integrals of Bessel functions, SIAM J. Math. Anal. 6 (1975), no. 5, 868–881. MR 390318, DOI 10.1137/0506076
- I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London-Toronto, 1980. Corrected and enlarged edition edited by Alan Jeffrey; Incorporating the fourth edition edited by Yu. V. Geronimus [Yu. V. Geronimus] and M. Yu. Tseytlin [M. Yu. Tseĭtlin]; Translated from the Russian. MR 582453
- Charles A. Micchelli, Interpolation of scattered data: distance matrices and conditionally positive definite functions, Constr. Approx. 2 (1986), no. 1, 11–22. MR 891767, DOI 10.1007/BF01893414
- Jolanta K. Misiewicz and Donald St. P. Richards, Positivity of integrals of Bessel functions, SIAM J. Math. Anal. 25 (1994), no. 2, 596–601. MR 1266579, DOI 10.1137/S0036141092226934
- Francis J. Narcowich and Joseph D. Ward, Norms of inverses and condition numbers for matrices associated with scattered data, J. Approx. Theory 64 (1991), no. 1, 69–94. MR 1086096, DOI 10.1016/0021-9045(91)90087-Q
- Will Light (ed.), Advances in numerical analysis. Vol. II, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1992. Wavelets, subdivision algorithms, and radial basis functions. MR 1172118
- Robert Schaback and Z. Wu, Operators on radial functions, J. Comput. Appl. Math. 73 (1996), no. 1-2, 257–270. MR 1424880, DOI 10.1016/0377-0427(96)00047-7
- Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, NJ, 1971. MR 304972
- James Stewart, Positive definite functions and generalizations, an historical survey, Rocky Mountain J. Math. 6 (1976), no. 3, 409–434. MR 430674, DOI 10.1216/RMJ-1976-6-3-409
- Holger Wendland, Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree, Adv. Comput. Math. 4 (1995), no. 4, 389–396. MR 1366510, DOI 10.1007/BF02123482
- Holger Wendland, Sobolev-type error estimates for interpolation by radial basis functions, Surface fitting and multiresolution methods (Chamonix–Mont-Blanc, 1996) Vanderbilt Univ. Press, Nashville, TN, 1997, pp. 337–344. MR 1660006
- Holger Wendland, Error estimates for interpolation by compactly supported radial basis functions of minimal degree, J. Approx. Theory 93 (1998), no. 2, 258–272. MR 1616781, DOI 10.1006/jath.1997.3137
- Saunders MacLane, Steinitz field towers for modular fields, Trans. Amer. Math. Soc. 46 (1939), 23–45. MR 17, DOI 10.1090/S0002-9947-1939-0000017-3
- Zong Min Wu and Robert Schaback, Local error estimates for radial basis function interpolation of scattered data, IMA J. Numer. Anal. 13 (1993), no. 1, 13–27. MR 1199027, DOI 10.1093/imanum/13.1.13
- Zong Min Wu, Compactly supported positive definite radial functions, Adv. Comput. Math. 4 (1995), no. 3, 283–292. MR 1357720, DOI 10.1007/BF03177517
Bibliographic Information
- M. D. Buhmann
- Affiliation: Lehrstuhl VIII Mathematik, Universität Dortmund, 44221 Dortmund, Germany
- Address at time of publication: Lehrstuhl Numerik, Justus-Liebig-Universität, Heinrich-Buff-Ring 44, 35392 Giessen, Germany
- Email: martin.buhmann@math.uni-giessen.de
- Received by editor(s): January 7, 1999
- Published electronically: March 16, 2000
- © Copyright 2000 American Mathematical Society
- Journal: Math. Comp. 70 (2001), 307-318
- MSC (2000): Primary 41A05, 41A15, 41A25, 41A30, 65D05, 65D15
- DOI: https://doi.org/10.1090/S0025-5718-00-01251-5
- MathSciNet review: 1803129