Transformation of hypersingular integrals and black-box cubature
HTML articles powered by AMS MathViewer
- by S. A. Sauter and C. Lage;
- Math. Comp. 70 (2001), 223-250
- DOI: https://doi.org/10.1090/S0025-5718-00-01261-8
- Published electronically: June 12, 2000
- PDF | Request permission
Abstract:
In this paper, we will consider hypersingular integrals as they arise by transforming elliptic boundary value problems into boundary integral equations. First, local representations of these integrals will be derived. These representations contain so-called finite-part integrals. In the second step, these integrals are reformulated as improper integrals. We will show that these integrals can be treated by cubature methods for weakly singular integrals as they exist in the literature.References
- Donald G. Anderson, Gaussian quadrature formulae for $\int _{0}^{1}-\textrm {ln}(x)f(x)\,dx$, Math. Comp. 19 (1965), 477–481. MR 178569, DOI 10.1090/S0025-5718-1965-0178569-1
- K. Atkinson. Solving Integral Equations on Surfaces in Space. In G. Hämmerlin and K. Hoffmann, editors, Constructive Methods for the Practical Treatment of Integral Equations, pages 20–43. Birkhäuser: ISNM, 1985.
- Martin Costabel, Boundary integral operators on Lipschitz domains: elementary results, SIAM J. Math. Anal. 19 (1988), no. 3, 613–626. MR 937473, DOI 10.1137/0519043
- Stefan Erichsen and Stefan A. Sauter, Efficient automatic quadrature in $3$-d Galerkin BEM, Comput. Methods Appl. Mech. Engrg. 157 (1998), no. 3-4, 215–224. Seventh Conference on Numerical Methods and Computational Mechanics in Science and Engineering (NMCM 96) (Miskolc). MR 1634288, DOI 10.1016/S0045-7825(97)00236-3
- I. Graham, W. Hackbusch, and S. Sauter. Discrete boundary element methods on general meshes in 3d. Technical Report 97/19, University of Bath, U.K., 1997. Mathematics Preprint, to appear in Numer. Math.
- M. Guiggiani. Direct Evaluation of Hypersingular Integrals in 2D BEM. In W. Hackbusch, editor, Proc. Of 7th GAMM Seminar on Numerical Techniques for BEM, Kiel 1991, pages 23–34, Braunschweig, 1991. Vieweg.
- M. Guiggiani and A. Gigante, A general algorithm for multidimensional Cauchy principal value integrals in the boundary element method, Trans. ASME J. Appl. Mech. 57 (1990), no. 4, 906–915. MR 1165521, DOI 10.1115/1.2897660
- Wolfgang Hackbusch, Integral equations, International Series of Numerical Mathematics, vol. 120, Birkhäuser Verlag, Basel, 1995. Theory and numerical treatment; Translated and revised by the author from the 1989 German original. MR 1350296, DOI 10.1007/978-3-0348-9215-5
- Wolfgang Hackbush and Stefan A. Sauter, On the efficient use of the Galerkin method to solve Fredholm integral equations, Proceedings of ISNA ’92—International Symposium on Numerical Analysis, Part I (Prague, 1992), 1993, pp. 301–322. MR 1228511, DOI 10.21136/AM.1993.104558
- Hou De Han, A boundary element method for Signorini problems in three dimensions, Numer. Math. 60 (1991), no. 1, 63–75. MR 1131499, DOI 10.1007/BF01385714
- Hou De Han, The boundary integro-differential equations of three-dimensional Neumann problem in linear elasticity, Numer. Math. 68 (1994), no. 2, 269–281. MR 1283342, DOI 10.1007/s002110050061
- R. Kieser. Über einseitige Sprungrelationen und hypersinguläre Operatoren in der Methode der Randelemente. PhD thesis, Mathematisches Institut A, Universität Stuttgart, Germany, 1990.
- José M. Pérez-Jordá, Emilio San-Fabián, and Federico Moscardó, A simple, reliable and efficient scheme for automatic numerical integration, Comput. Phys. Comm. 70 (1992), no. 2, 271–284. MR 1173951, DOI 10.1016/0010-4655(92)90192-2
- C. Lage. Software Development for Boundary Element Mehtods: Analysis and Design of Efficient Techniques (in German). PhD thesis, Lehrstuhl Prakt. Math., Universität Kiel, 1995.
- J. N. Lyness, Applications of extrapolation techniques to multidimensional quadrature of some integrand functions with a singularity, J. Comput. Phys. 20 (1976), no. 3, 346–364. MR 395174, DOI 10.1016/0021-9991(76)90087-5
- J. N. Lyness, An error functional expansion for $N$-dimensional quadrature with an integrand function singular at a point, Math. Comp. 30 (1976), no. 133, 1–23. MR 408211, DOI 10.1090/S0025-5718-1976-0408211-0
- J. N. Lyness and G. Monegato, Quadrature error functional expansions for the simplex when the integrand function has singularities at vertices, Math. Comp. 34 (1980), no. 149, 213–225. MR 551299, DOI 10.1090/S0025-5718-1980-0551299-8
- Solomon G. Mikhlin and Siegfried Prössdorf, Singular integral operators, Springer-Verlag, Berlin, 1986. Translated from the German by Albrecht Böttcher and Reinhard Lehmann. MR 881386, DOI 10.1007/978-3-642-61631-0
- J.-C. Nédélec, Curved finite element methods for the solution of integral singular equations on surfaces in $\textbf {R}^{3}$, Computing methods in applied sciences and engineering (Second Internat. Sympos., Versailles, 1975) Lecture Notes in Econom. and Math. Systems, Vol. 134, Springer, Berlin-New York, 1976, pp. 374–390. MR 502111
- J.-C. Nédélec, Integral equations with nonintegrable kernels, Integral Equations Operator Theory 5 (1982), no. 4, 562–572. MR 665149, DOI 10.1007/BF01694054
- O. A. Oleĭnik, A. S. Shamaev, and G. A. Yosifian, Mathematical problems in elasticity and homogenization, Studies in Mathematics and its Applications, vol. 26, North-Holland Publishing Co., Amsterdam, 1992. MR 1195131
- S. Sauter and C. Lage. Transformation of hypersingular integrals and black-box cubature (extended version). Technical Report 97-17, Universität Kiel, 1997. (Available via WWW-address: http://www.numerik.uni-kiel.de/reports/1997/).
- S. A. Sauter. Über die effiziente Verwendung des Galerkinverfahrens zur Lösung Fredholmscher Integralgleichungen. PhD thesis, Inst. f. Prakt. Math., Universität Kiel, 1992.
- S. A. Sauter and A. Krapp, On the effect of numerical integration in the Galerkin boundary element method, Numer. Math. 74 (1996), no. 3, 337–359. MR 1408607, DOI 10.1007/s002110050220
- C. Schwab and W. L. Wendland, Kernel properties and representations of boundary integral operators, Math. Nachr. 156 (1992), 187–218. MR 1233945, DOI 10.1002/mana.19921560113
- C. Schwab and W. L. Wendland, On numerical cubatures of singular surface integrals in boundary element methods, Numer. Math. 62 (1992), no. 3, 343–369. MR 1169009, DOI 10.1007/BF01396234
- Tobias von Petersdorff and Christoph Schwab, Fully discrete multiscale Galerkin BEM, Multiscale wavelet methods for partial differential equations, Wavelet Anal. Appl., vol. 6, Academic Press, San Diego, CA, 1997, pp. 287–346. MR 1475002, DOI 10.1016/S1874-608X(97)80009-X
- W. L. Wendland, Strongly elliptic boundary integral equations, The state of the art in numerical analysis (Birmingham, 1986) Inst. Math. Appl. Conf. Ser. New Ser., vol. 9, Oxford Univ. Press, New York, 1987, pp. 511–562. MR 921677
Bibliographic Information
- S. A. Sauter
- Affiliation: Institut für Mathematik, Universität Zürich, Winterthurerstr. 190, CH-8050 Zürich, Switzerland
- MR Author ID: 313335
- Email: stas@amath.unizh.ch
- C. Lage
- Affiliation: Coyote Systems, 2740 Van Ness Avenue #210, San Francisco, CA 94109
- Email: lage@coyotesystems.com
- Received by editor(s): January 8, 1998
- Published electronically: June 12, 2000
- © Copyright 2000 American Mathematical Society
- Journal: Math. Comp. 70 (2001), 223-250
- MSC (2000): Primary 65N38, 65R10, 65R20
- DOI: https://doi.org/10.1090/S0025-5718-00-01261-8
- MathSciNet review: 1803126