Weakened acute type condition for tetrahedral triangulations and the discrete maximum principle
HTML articles powered by AMS MathViewer
- by Sergey Korotov, Michal Křížek and Pekka Neittaanmäki;
- Math. Comp. 70 (2001), 107-119
- DOI: https://doi.org/10.1090/S0025-5718-00-01270-9
- Published electronically: May 23, 2000
- PDF | Request permission
Abstract:
We prove that a discrete maximum principle holds for continuous piecewise linear finite element approximations for the Poisson equation with the Dirichlet boundary condition also under a condition of the existence of some obtuse internal angles between faces of terahedra of triangulations of a given space domain. This result represents a weakened form of the acute type condition for the three-dimensional case.References
- Enrico Bertolazzi, Discrete conservation and discrete maximum principle for elliptic PDEs, Math. Models Methods Appl. Sci. 8 (1998), no. 4, 685–711. MR 1634846, DOI 10.1142/S0218202598000317
- James H. Bramble and Bert E. Hubbard, New monotone type approximations for elliptic problems, Math. Comp. 18 (1964), 349–367. MR 165702, DOI 10.1090/S0025-5718-1964-0165702-X
- Philippe G. Ciarlet, Discrete maximum principle for finite-difference operators, Aequationes Math. 4 (1970), 338–352. MR 292317, DOI 10.1007/BF01844166
- P. G. Ciarlet and P.-A. Raviart, Maximum principle and uniform convergence for the finite element method, Comput. Methods Appl. Mech. Engrg. 2 (1973), 17–31. MR 375802, DOI 10.1016/0045-7825(73)90019-4
- Miloslav Feistauer, Jiří Felcman, Mirko Rokyta, and Zdeněk Vlášek, Finite-element solution of flow problems with trailing conditions, J. Comput. Appl. Math. 44 (1992), no. 2, 131–165. MR 1197680, DOI 10.1016/0377-0427(92)90008-L
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften, Vol. 224, Springer-Verlag, Berlin-New York, 1977. MR 473443, DOI 10.1007/978-3-642-96379-7
- Golias, N. A., Tsiboukis, T. D., An approach to refining three-dimensional tetrahedral meshes based on Delaunay transformations, Internat. J. Numer. Methods Engrg. 37 (1994), 793–812.
- W. Höhn and H.-D. Mittelmann, Some remarks on the discrete maximum-principle for finite elements of higher order, Computing 27 (1981), no. 2, 145–154 (English, with German summary). MR 632125, DOI 10.1007/BF02243548
- Michal Křížek, An equilibrium finite element method in three-dimensional elasticity, Apl. Mat. 27 (1982), no. 1, 46–75 (English, with Czech summary). With a loose Russian summary. MR 640139
- M. Křížek and L. Qun, On diagonal dominance of stiffness matrices in $3$D, East-West J. Numer. Math. 3 (1995), no. 1, 59–69. MR 1331484
- Michal Křížek and Theofanis Strouboulis, How to generate local refinements of unstructured tetrahedral meshes satisfying a regularity ball condition, Numer. Methods Partial Differential Equations 13 (1997), no. 2, 201–214. MR 1436615, DOI 10.1002/(SICI)1098-2426(199703)13:2<201::AID-NUM5>3.0.CO;2-T
- Maria Elizabeth G. Ong, Uniform refinement of a tetrahedron, SIAM J. Sci. Comput. 15 (1994), no. 5, 1134–1144. MR 1289158, DOI 10.1137/0915070
- Santos, V. R., On the strong maximum principle for some piecewise linear finite element approximate problems of nonpositive type, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29 (1982), 473–491.
- Guido Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble) 15 (1965), no. fasc. 1, 189–258 (French). MR 192177, DOI 10.5802/aif.204
- G. Stoyan, On a maximum principle for matrices, and on conservation of monotonicity. With applications to discretization methods, Z. Angew. Math. Mech. 62 (1982), no. 8, 375–381 (English, with German and Russian summaries). MR 674644, DOI 10.1002/zamm.19820620804
- Gisbert Stoyan, On maximum principles for monotone matrices, Linear Algebra Appl. 78 (1986), 147–161. MR 840173, DOI 10.1016/0024-3795(86)90021-2
- Gilbert Strang and George J. Fix, An analysis of the finite element method, Prentice-Hall Series in Automatic Computation, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1973. MR 443377
- Richard S. Varga, Matrix iterative analysis, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1962. MR 158502
- Shangyou Zhang, Successive subdivisions of tetrahedra and multigrid methods on tetrahedral meshes, Houston J. Math. 21 (1995), no. 3, 541–556. MR 1352605
Bibliographic Information
- Sergey Korotov
- Affiliation: University of Jyväskylä, Department of Mathematical Information Technology, P.O. Box 35, FIN–40351 Jyväskylä, Finland
- Email: korotov@mit.jyu.fi
- Michal Křížek
- Affiliation: Mathematical Institute, Academy of Sciences, Žitná 25, CZ–11567 Prague 1, Czech Republic
- Email: krizek@math.cas.cz
- Pekka Neittaanmäki
- Affiliation: University of Jyväskylä, Department of Mathematical Information Technology, P.O. Box 35, FIN–40351 Jyväskylä, Finland
- Email: pn@mit.jyu.fi
- Received by editor(s): January 26, 1999
- Published electronically: May 23, 2000
- Additional Notes: The first author was partly supported by the Academy of Finland, Grant no. 752205, and partly by the Mittag-Leffler Institute, Djursholm, Sweden
The second author was supported by the Grant no. 201/98/0528 of the Grant Agency of Czech Republic - © Copyright 2000 American Mathematical Society
- Journal: Math. Comp. 70 (2001), 107-119
- MSC (2000): Primary 65N30
- DOI: https://doi.org/10.1090/S0025-5718-00-01270-9
- MathSciNet review: 1803125