Error estimates in the numerical evaluation of some BEM singular integrals
HTML articles powered by AMS MathViewer
- by G. Mastroianni and G. Monegato;
- Math. Comp. 70 (2001), 251-267
- DOI: https://doi.org/10.1090/S0025-5718-00-01272-2
- Published electronically: June 12, 2000
- PDF | Request permission
Abstract:
In some applications of Galerkin boundary element methods one has to compute integrals which, after proper normalization, are of the form \begin{equation*}\int _{a}^{b}\int _{-1}^{1}\frac {f(x,y)}{{x-y}}dxdy,\end{equation*} where $(a,b)\equiv (-1,1)$, or $(a,b)\equiv (a,-1)$, or $(a,b)\equiv (1,b)$, and $f(x,y)$ is a smooth function. In this paper we derive error estimates for a numerical approach recently proposed to evaluate the above integral when a $p-$, or $h-p$, formulation of a Galerkin method is used. This approach suggests approximating the inner integral by a quadrature formula of interpolatory type that exactly integrates the Cauchy kernel, and the outer integral by a rule which takes into account the $\log$ endpoint singularities of its integrand. Some numerical examples are also given.References
- A.Aimi, M.Diligenti, G.Monegato, Numerical integration schemes for the BEM solution of hypersingular integral equations, Int. J. Numer. Meth. Engng. 45, 1999, pp.1807-1830.
- Raymond L. Bisplinghoff and Holt Ashley, Principles of aeroelasticity, John Wiley & Sons, Inc., New York-London, 1962. MR 151036
- Giuliana Criscuolo and Giuseppe Mastroianni, On the convergence of an interpolatory product rule for evaluating Cauchy principal value integrals, Math. Comp. 48 (1987), no. 178, 725–735. MR 878702, DOI 10.1090/S0025-5718-1987-0878702-4
- G. Criscuolo and G. Mastroianni, On the uniform convergence of Gaussian quadrature rules for Cauchy principal value integrals, Numer. Math. 54 (1989), no. 4, 445–461. MR 972419, DOI 10.1007/BF01396323
- Giuliana Criscuolo, Giuseppe Mastroianni, and Giovanni Monegato, Convergence properties of a class of product formulas for weakly singular integral equations, Math. Comp. 55 (1990), no. 191, 213–230. MR 1023045, DOI 10.1090/S0025-5718-1990-1023045-1
- Giuliana Criscuolo and Giuseppe Mastroianni, Mean and uniform convergence of quadrature rules for evaluating the finite Hilbert transform, Progress in approximation theory, Academic Press, Boston, MA, 1991, pp. 141–175. MR 1114771
- M. Diligenti and G. Monegato, Integral evaluation in the BEM solution of (hyper)singular integral equations. $2$D problems on polygonal domains, J. Comput. Appl. Math. 81 (1997), no. 1, 29–57. MR 1459355, DOI 10.1016/S0377-0427(97)00007-1
- Z. Ditzian and V. Totik, Moduli of smoothness, Springer Series in Computational Mathematics, vol. 9, Springer-Verlag, New York, 1987. MR 914149, DOI 10.1007/978-1-4612-4778-4
- A.Erdely et al., Higher Transcendental Functions, Bateman Manuscript Project, vol. I, McGraw-Hill, New York, 1953.
- G. Mastroianni and M. G. Russo, Lagrange interpolation in some weighted uniform spaces, Facta Univ. Ser. Math. Inform. 12 (1997), 185–201. Dedicated to Professor Dragoslav S. Mitrinović (1908–1995) (Niš, 1996). MR 1644840
- Serge Dubuc and Jean-Louis Merrien, Dyadic Hermite interpolation on a rectangular mesh, Adv. Comput. Math. 10 (1999), no. 3-4, 343–365. MR 1692252, DOI 10.1023/A:1018943002601
- G. Monegato, The numerical evaluation of one-dimensional Cauchy principal value integrals, Computing 29 (1982), no. 4, 337–354 (English, with German summary). MR 684742, DOI 10.1007/BF02246760
- Giovanni Monegato, Convergence of product formulas for the numerical evaluation of certain two-dimensional Cauchy principal value integrals, Numer. Math. 43 (1984), no. 2, 161–173. MR 736078, DOI 10.1007/BF01390121
- G. Monegato and L. Scuderi, High order methods for weakly singular integral equations with nonsmooth input functions, Math. Comp. 67 (1998), no. 224, 1493–1515. MR 1604395, DOI 10.1090/S0025-5718-98-01005-9
- G. Monegato and J. N. Lyness, On the numerical evaluation of a particular singular two-dimensional integral, Math. Comp. 33 (1979), no. 147, 993–1002. MR 528052, DOI 10.1090/S0025-5718-1979-0528052-6
- Masatake Mori, Quadrature formulas obtained by variable transformation and the DE-rule, Proceedings of the international conference on computational and applied mathematics (Leuven, 1984), 1985, pp. 119–130. MR 793948, DOI 10.1016/0377-0427(85)90011-1
- G. P. Nevai, Mean convergence of Lagrange interpolation. I, J. Approximation Theory 18 (1976), no. 4, 363–377. MR 425420, DOI 10.1016/0021-9045(76)90008-3
- Charles C. S. Song, Numerical integration of a double integral with Cauchy-type singularity, AIAA J. 7 (1969), 1389–1390. MR 245204, DOI 10.2514/3.5362
- Gábor Szegő, Orthogonal polynomials, 4th ed., American Mathematical Society Colloquium Publications, Vol. XXIII, American Mathematical Society, Providence, RI, 1975. MR 372517
Bibliographic Information
- G. Mastroianni
- Affiliation: Dipartimento di Matematica, Università della Basilicata, I-85100 Potenza, Italy
- Email: mg039sci@unibas.it
- G. Monegato
- Affiliation: Dipartimento di Matematica, Politecnico di Torino, I-10129 Torino, Italy
- Email: Monegato@polito.it
- Received by editor(s): February 17, 1999
- Published electronically: June 12, 2000
- Additional Notes: Work supported by the Consiglio Nazionale delle Ricerche - Comitato Nazionale per le Ricerche Tecnologiche e l’Innovazione, under contract n.96.01875.CT11.
- © Copyright 2000 American Mathematical Society
- Journal: Math. Comp. 70 (2001), 251-267
- MSC (2000): Primary 41A55; Secondary 65D32, 65N38
- DOI: https://doi.org/10.1090/S0025-5718-00-01272-2
- MathSciNet review: 1803127