Explicit upper bounds for exponential sums over primes
HTML articles powered by AMS MathViewer
- by Hedi Daboussi and Joël Rivat;
- Math. Comp. 70 (2001), 431-447
- DOI: https://doi.org/10.1090/S0025-5718-00-01280-1
- Published electronically: June 12, 2000
- PDF | Request permission
Abstract:
We give explicit upper bounds for linear trigonometric sums over primes.References
- Ming Gao Lu, Estimate of a complete trigonometric sum, Sci. Sinica Ser. A 28 (1985), no. 6, 561–578. MR 813843
- Jing Run Chen and Tian Ze Wang, On the Goldbach problem, Acta Math. Sinica 32 (1989), no. 5, 702–718 (Chinese). MR 1046491
- Tian Ze Wang and Jing Run Chen, Estimation of linear trigonometric sums with prime number variables, Acta Math. Sinica 37 (1994), no. 1, 25–31 (Chinese, with English and Chinese summaries). MR 1272501
- Hédi Daboussi, Effective estimates of exponential sums over primes, Analytic number theory, Vol. 1 (Allerton Park, IL, 1995) Progr. Math., vol. 138, Birkhäuser Boston, Boston, MA, 1996, pp. 231–244. MR 1399341
- P. Dusart, Autour de la fonction qui compte le nombre de nombres premiers, PhD thesis, Université de Limoges, 1998.
- P. D. T. A. Elliott, Probabilistic number theory. I, Grundlehren der Mathematischen Wissenschaften, vol. 239, Springer-Verlag, New York-Berlin, 1979. Mean-value theorems. MR 551361, DOI 10.1007/978-1-4612-9989-9
- H. L. Montgomery and R. C. Vaughan, The large sieve, Mathematika 20 (1973), 119–134. MR 374060, DOI 10.1112/S0025579300004708
- J. Barkley Rosser and Lowell Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64–94. MR 137689
- J. Barkley Rosser and Lowell Schoenfeld, Sharper bounds for the Chebyshev functions $\theta (x)$ and $\psi (x)$, Math. Comp. 29 (1975), 243–269. MR 457373, DOI 10.1090/S0025-5718-1975-0457373-7
- H. Siebert, Montgomery’s weighted sieve for dimension two, Monatsh. Math. 82 (1976), no. 4, 327–336. MR 424731, DOI 10.1007/BF01540603
- R. C. Vaughan, An elementary method in prime number theory, Acta Arith. 37 (1980), 111–115. MR 598869, DOI 10.4064/aa-37-1-111-115
- I. M. Vinogradov, Representation of an odd number as the sum of three primes, Dokl. Akad. Nauk SSSR, 15 (1937), pp. 291–294.
- Sam Perlis, Maximal orders in rational cyclic algebras of composite degree, Trans. Amer. Math. Soc. 46 (1939), 82–96. MR 15, DOI 10.1090/S0002-9947-1939-0000015-X
Bibliographic Information
- Hedi Daboussi
- Affiliation: Faculté de Mathématiques et d’Informatique, 33 rue Saint-Leu, 80039 Amiens, France
- Address at time of publication: UMR CNRS 8752, Mathématiques, Université Paris-Sud, 91405 Orsay Cedex, France
- Email: daboussi@math.u-psud.fr
- Joël Rivat
- Affiliation: Institut Girard Desargues, CNRS UPRES-A 5028, Université Lyon I, 43, boulevard du 11 novembre 1918, 69622 Villeurbanne cedex, France
- Address at time of publication: Institut Elie Cartan, Université Henri Poincaré, B.P. 239, 54506 Vandoeuvre cedex, France
- Email: rivat@iecn.u-nancy.fr
- Received by editor(s): November 3, 1998
- Published electronically: June 12, 2000
- © Copyright 2000 American Mathematical Society
- Journal: Math. Comp. 70 (2001), 431-447
- MSC (2000): Primary 11L07, 11L20
- DOI: https://doi.org/10.1090/S0025-5718-00-01280-1
- MathSciNet review: 1803131
Dedicated: Dedicated to the memory of Chen Jing Run