Classification of quintic eutactic forms
HTML articles powered by AMS MathViewer
- by Christian Batut;
- Math. Comp. 70 (2001), 395-417
- DOI: https://doi.org/10.1090/S0025-5718-00-01295-3
- Published electronically: July 21, 2000
- PDF | Request permission
Abstract:
From the classical Voronoi algorithm, we derive an algorithm to classify quadratic positive definite forms by their minimal vectors; we define some new invariants for a class, for which several conjectures are proposed. Applying the algorithm to dimension 5 we obtain the table of the 136 classes in this dimension, we enumerate the 118 eutactic quintic forms, and we verify the Ash formula.References
- Avner Ash, On eutactic forms, Canadian J. Math. 29 (1977), no. 5, 1040–1054. MR 491523, DOI 10.4153/CJM-1977-101-2
- Avner Ash, On the existence of eutactic forms, Bull. London Math. Soc. 12 (1980), no. 3, 192–196. MR 572099, DOI 10.1112/blms/12.3.192
- J.-L. Baril, Autour de l’algorithme de Voronoi: constructions de réseaux euclidiens, Thèse Bordeaux (1996).
- C. Bavard, Une formule d’Euler pour les classes minimales de réseaux, preprint.
- Anne-Marie Bergé and Jacques Martinet, Sur la classification des réseaux eutactiques, J. London Math. Soc. (2) 53 (1996), no. 3, 417–432 (French). MR 1396707, DOI 10.1112/jlms/53.3.417
- J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 290, Springer-Verlag, New York, 1988. With contributions by E. Bannai, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov. MR 920369, DOI 10.1007/978-1-4757-2016-7
- J. H. Conway and N. J. A. Sloane, Low-dimensional lattices. III. Perfect forms, Proc. Roy. Soc. London Ser. A 418 (1988), no. 1854, 43–80. MR 953277
- A. Korkine, G. Zolotareff, Sur les formes quadratiques positives, Math. Ann. 11 (1877), 242–292.
- Jacques Martinet, Les réseaux parfaits des espaces euclidiens, Mathématiques. [Mathematics], Masson, Paris, 1996 (French, with French summary). MR 1434803
- W. Plesken and B. Souvignier, Computing isometries of lattices, J. Symbolic Comput. 24 (1997), no. 3-4, 327–334. Computational algebra and number theory (London, 1993). MR 1484483, DOI 10.1006/jsco.1996.0130
- W.I. Štogrin, Quasi densest lattice packing of spheres., Dokl-Akad-Nauk-SSSR 218 (1974), 62–65.
- G. Voronoï, Nouvelles applications des paramètres continus à la théorie des formes quadratiques : 1 Sur quelques propriétés des formes quadratiques positives parfaites, J. Reine Angew. Math 133 (1908), 97–178.
- G. L. Watson, On the minimum points of a postive quadratic form, Mathematika 18 (1971), 60–70. MR 289421, DOI 10.1112/S0025579300008378
Bibliographic Information
- Christian Batut
- Affiliation: A2X, Mathématiques, Université Bordeaux I, 351, cours de la Libération, 33405 Talence cedex, France
- Email: christian.batut@math.u-bordeaux.fr
- Received by editor(s): February 13, 1997
- Received by editor(s) in revised form: June 19, 1997
- Published electronically: July 21, 2000
- © Copyright 2000 American Mathematical Society
- Journal: Math. Comp. 70 (2001), 395-417
- MSC (2000): Primary 11H55, 11H56; Secondary 11E10
- DOI: https://doi.org/10.1090/S0025-5718-00-01295-3
- MathSciNet review: 1803130