Shape calculus and finite element method in smooth domains
HTML articles powered by AMS MathViewer
- by T. Tiihonen;
- Math. Comp. 70 (2001), 1-15
- DOI: https://doi.org/10.1090/S0025-5718-00-01323-5
- Published electronically: October 2, 2000
- PDF | Request permission
Abstract:
The use of finite elements in smooth domains leads naturally to polyhedral or piecewise polynomial approximations of the boundary. Hence the approximation error consists of two parts: the geometric part and the finite element part. We propose to exploit this decomposition in the error analysis by introducing an auxiliary problem defined in a polygonal domain approximating the original smooth domain. The finite element part of the error can be treated in the standard way. To estimate the geometric part of the error, we need quantitative estimates related to perturbation of the geometry. We derive such estimates using the techniques developed for shape sensitivity analysis.References
- Ivo Babuška, Stabilität des Definitionsgebietes mit Rücksicht auf grundlegende Probleme der Theorie der partiellen Differentialgleichungen auch im Zusammenhang mit der Elastizitätstheorie. I, II, Czechoslovak Math. J. 11(86) (1961), 76–105, 165–203 (Russian, with German summary). MR 125326
- Alan Berger, Ridgway Scott, and Gilbert Strang, Approximate boundary conditions in the finite element method, Symposia Mathematica, Vol. X (Convegno di Geometria Differenziale, INDAM, Rome, 1971 & Convegno di Analisi Numerica, INDAM, Rome, 1972) Academic Press, London-New York, 1972, pp. 295–313. MR 403258
- Alan Berger, Ridgway Scott, and Gilbert Strang, Approximate boundary conditions in the finite element method, Symposia Mathematica, Vol. X (Convegno di Geometria Differenziale, INDAM, Rome, 1971 & Convegno di Analisi Numerica, INDAM, Rome, 1972) Academic Press, London-New York, 1972, pp. 295–313. MR 403258
- P. G. Ciarlet and P.-A. Raviart, Interpolation theory over curved elements, with applications to finite element methods, Comput. Methods Appl. Mech. Engrg. 1 (1972), 217–249. MR 375801, DOI 10.1016/0045-7825(72)90006-0
- M. Lenoir, Optimal isoparametric finite elements and error estimates for domains involving curved boundaries, SIAM J. Numer. Anal. 23 (1986), no. 3, 562–580. MR 842644, DOI 10.1137/0723036
- Rolf Rannacher and Ridgway Scott, Some optimal error estimates for piecewise linear finite element approximations, Math. Comp. 38 (1982), no. 158, 437–445. MR 645661, DOI 10.1090/S0025-5718-1982-0645661-4
- Ridgway Scott, Interpolated boundary conditions in the finite element method, SIAM J. Numer. Anal. 12 (1975), 404–427. MR 386304, DOI 10.1137/0712032
- A. H. Schatz and L. B. Wahlbin, On the quasi-optimality in $L_{\infty }$ of the $\dot H^{1}$-projection into finite element spaces, Math. Comp. 38 (1982), no. 157, 1–22. MR 637283, DOI 10.1090/S0025-5718-1982-0637283-6
- Jan Sokołowski and Jean-Paul Zolésio, Introduction to shape optimization, Springer Series in Computational Mathematics, vol. 16, Springer-Verlag, Berlin, 1992. Shape sensitivity analysis. MR 1215733, DOI 10.1007/978-3-642-58106-9
- Gilbert Strang and Alan E. Berger, The change in solution due to change in domain, Partial differential equations (Proc. Sympos. Pure Math., Vol. XXIII, Univ. California, Berkeley, Calif., 1971) Proc. Sympos. Pure Math., Vol. XXIII, Amer. Math. Soc., Providence, RI, 1973, pp. 199–205. MR 337023
- Vidar Thomée, Polygonal domain approximation in Dirichlet’s problem, J. Inst. Math. Appl. 11 (1973), 33–44. MR 349044, DOI 10.1093/imamat/11.1.33
- T. Tiihonen, Finite element approximation of nonlocal heat radiation problems, Math. Models Methods Appl. Sci. 8 (1998), no. 6, 1071–1089. MR 1646531, DOI 10.1142/S0218202598000494
- T. Tiihonen, Shape calculus and FEM in smooth domains, Finite element methods (Jyväskylä, 1997) Lecture Notes in Pure and Appl. Math., vol. 196, Dekker, New York, 1998, pp. 259–267. MR 1602722
- R. Verfürth, Mixed finite element approximation of a fluid flow problem, The mathematics of finite elements and applications, V (Uxbridge, 1984) Academic Press, London, 1985, pp. 335–342. MR 811046
- R. Verfürth, Finite element approximation of incompressible Navier-Stokes equations with slip boundary condition. II, Numer. Math. 59 (1991), no. 6, 615–636. MR 1124131, DOI 10.1007/BF01385799
- Antoni Zygmund, Sur un théorèm de M. Fejér, Bull. Sém. Math. Univ. Wilno 2 (1939), 3–12 (French). MR 52
Bibliographic Information
- T. Tiihonen
- Affiliation: Department of Mathematical Information Technology, University of Jyväskylä, Box 35, FIN–40351 Jyväskylä, Finland
- Email: tiihonen@mit.jyu.fi
- Received by editor(s): November 17, 1997
- Published electronically: October 2, 2000
- © Copyright 2000 American Mathematical Society
- Journal: Math. Comp. 70 (2001), 1-15
- MSC (2000): Primary 65N30; Secondary 49Q12
- DOI: https://doi.org/10.1090/S0025-5718-00-01323-5
- MathSciNet review: 1803123