Finite volume relaxation schemes for multidimensional conservation laws
Authors:
Theodoros Katsaounis and Charalambos Makridakis
Journal:
Math. Comp. 70 (2001), 533-553
MSC (2000):
Primary 65M12, 65M15; Secondary 65L06
DOI:
https://doi.org/10.1090/S0025-5718-00-01188-1
Published electronically:
March 3, 2000
MathSciNet review:
1681104
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We consider finite volume relaxation schemes for multidimensional scalar conservation laws. These schemes are constructed by appropriate discretization of a relaxation system and it is shown to converge to the entropy solution of the conservation law with a rate of $h^{1/4}$ in $L^{\infty }([0, T] , L^{1} _\mathrm {loc}({\mathbb {R}} ^{d} ))$.
- F. Bouchut and B. Perthame, Kružkov’s estimates for scalar conservation laws revisited, Trans. Amer. Math. Soc. 350 (1998), no. 7, 2847–2870 (English, with English and French summaries). MR 1475677, DOI https://doi.org/10.1090/S0002-9947-98-02204-1
- Gui Qiang Chen, C. David Levermore, and Tai-Ping Liu, Hyperbolic conservation laws with stiff relaxation terms and entropy, Comm. Pure Appl. Math. 47 (1994), no. 6, 787–830. MR 1280989, DOI https://doi.org/10.1002/cpa.3160470602
- Bernardo Cockburn, On the continuity in ${\rm BV}(\Omega )$ of the $L^2$-projection into finite element spaces, Math. Comp. 57 (1991), no. 196, 551–561. MR 1094943, DOI https://doi.org/10.1090/S0025-5718-1991-1094943-9
- Bernardo Cockburn, Frédéric Coquel, and Philippe LeFloch, An error estimate for finite volume methods for multidimensional conservation laws, Math. Comp. 63 (1994), no. 207, 77–103. MR 1240657, DOI https://doi.org/10.1090/S0025-5718-1994-1240657-4
- B. Cockburn and H. Gau, A posteriori error estimates for general numerical methods for scalar conservation laws, Mat. Apl. Comput. 14 (1995), 37-47.
- Bernardo Cockburn and Pierre-Alain Gremaud, Error estimates for finite element methods for scalar conservation laws, SIAM J. Numer. Anal. 33 (1996), no. 2, 522–554. MR 1388487, DOI https://doi.org/10.1137/0733028
- Bernardo Cockburn and Pierre-Alain Gremaud, A priori error estimates for numerical methods for scalar conservation laws. I. The general approach, Math. Comp. 65 (1996), no. 214, 533–573. MR 1333308, DOI https://doi.org/10.1090/S0025-5718-96-00701-6
- Bernardo Cockburn and Pierre-Alain Gremaud, A priori error estimates for numerical methods for scalar conservation laws. II. Flux-splitting monotone schemes on irregular Cartesian grids, Math. Comp. 66 (1997), no. 218, 547–572. MR 1408372, DOI https://doi.org/10.1090/S0025-5718-97-00838-7
- Bernardo Cockburn, Pierre-Alain Gremaud, and Jimmy Xiangrong Yang, A priori error estimates for numerical methods for scalar conservation laws. III. Multidimensional flux-splitting monotone schemes on non-Cartesian grids, SIAM J. Numer. Anal. 35 (1998), no. 5, 1775–1803. MR 1640021, DOI https://doi.org/10.1137/S0036142997316165
- Michael G. Crandall and Andrew Majda, Monotone difference approximations for scalar conservation laws, Math. Comp. 34 (1980), no. 149, 1–21. MR 551288, DOI https://doi.org/10.1090/S0025-5718-1980-0551288-3
- R. Eymard, T. Gallouët, M. Ghilani and R. Herbin, Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by the finite volume schemes, IMA J. Numer. Anal. 18 (1998), 563–594.
- L. Gosse and Ch. Makridakis, A posteriori error estimates for numerical approximations to scalar conservation laws: Schemes satisfying strong and weak entropy inequalities. FORTH-IACM Technical Report 98.4 (1998).
- Shi Jin and Zhou Ping Xin, The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Comm. Pure Appl. Math. 48 (1995), no. 3, 235–276. MR 1322811, DOI https://doi.org/10.1002/cpa.3160480303
- Th. Katsaounis and Ch. Makridakis, Finite volume relaxation schemes for multidimensional conservation laws,, Preprint 97-12, Dept of Math., Univ. of Crete (1997).
- Th. Katsaounis and G. Zouraris, Numerical evaluation of relaxation schemes for multidimensional conservation laws, (To appear).
- M.A. Katsoulakis, G. Kossioris and Ch. Makridakis, Convergence and error estimates of relaxation schemes for multidimensional conservation laws, Comm. Partial Differential Equations 24 (1999), 395–424.
- Markos A. Katsoulakis and Athanasios E. Tzavaras, Contractive relaxation systems and the scalar multidimensional conservation law, Comm. Partial Differential Equations 22 (1997), no. 1-2, 195–233. MR 1434144, DOI https://doi.org/10.1080/03605309708821261
- Dietmar Kröner and Mirko Rokyta, Convergence of upwind finite volume schemes for scalar conservation laws in two dimensions, SIAM J. Numer. Anal. 31 (1994), no. 2, 324–343. MR 1276703, DOI https://doi.org/10.1137/0731017
- S.N. Kruzhkov, First order quasilinear equations with several independent variables, Math. USSR Sbornik 10 (1970), 217-243.
- N.N. Kuznetzov, Accuracy of some approximate methods for computing the weak solutions of a first-order quasi-linear equation, USSR Comp. Math. and Math. Phys. 16 (1976), 105-119.
- Denis Serre, Problèmes de Riemann singuliers, Appl. Anal. 35 (1990), no. 1-4, 175–185 (French, with English summary). MR 1387407, DOI https://doi.org/10.1080/00036819008839915
- Roberto Natalini, A discrete kinetic approximation of entropy solutions to multidimensional scalar conservation laws, J. Differential Equations 148 (1998), no. 2, 292–317. MR 1643175, DOI https://doi.org/10.1006/jdeq.1998.3460
- Christian Rohde, Upwind finite volume schemes for weakly coupled hyperbolic systems of conservation laws in 2D, Numer. Math. 81 (1998), no. 1, 85–123. MR 1657726, DOI https://doi.org/10.1007/s002110050385
- M. Kh. Dorri, Approximate solution of systems of hyperbolic equations, based on interpolation of a residue in Hermite’s sense, Zh. Vychisl. Mat. i Mat. Fiz. 22 (1982), no. 6, 1410–1420, 1533 (Russian). MR 683598
- Hans Joachim Schroll, Aslak Tveito, and Ragnar Winther, An $L^1$-error bound for a semi-implicit difference scheme applied to a stiff system of conservation laws, SIAM J. Numer. Anal. 34 (1997), no. 3, 1152–1166. MR 1451118, DOI https://doi.org/10.1137/S0036142994268855
- Wen Shen, Aslak Tveito, and Ragnar Winther, A system of conservation laws including a stiff relaxation term; the $2$D case, BIT 36 (1996), no. 4, 786–813. MR 1420276, DOI https://doi.org/10.1007/BF01733792
- J.-P. Vila, Convergence and error estimates in finite volume schemes for general multidimensional scalar conservation laws. I. Explicit monotone schemes, RAIRO Modél. Math. Anal. Numér. 28 (1994), no. 3, 267–295 (English, with English and French summaries). MR 1275345, DOI https://doi.org/10.1051/m2an/1994280302671
Retrieve articles in Mathematics of Computation with MSC (2000): 65M12, 65M15, 65L06
Retrieve articles in all journals with MSC (2000): 65M12, 65M15, 65L06
Additional Information
Theodoros Katsaounis
Affiliation:
Ecole Normale Supérieure, Département de Mathématique et d’Informatique, 45 rue d’Ulm, 75230 Paris Cedex 05, France
Email:
Theodoros.Katsaounis@ens.fr, thodoros@math.uch.gr
Charalambos Makridakis
Affiliation:
Department of Mathematics, University of Crete, 714 09 Heraklion, Crete, and Institute of Applied and Computational Mathematics, FORTH, 711 10 Heraklion, Crete, Greece
MR Author ID:
289627
Email:
makr@math.uch.gr
Received by editor(s):
October 31, 1997
Received by editor(s) in revised form:
September 23, 1998, November 20, 1998, and March 9, 1999
Published electronically:
March 3, 2000
Article copyright:
© Copyright 2000
American Mathematical Society