## Uniform convergence of the multigrid V-cycle for an anisotropic problem

HTML articles powered by AMS MathViewer

- by James H. Bramble and Xuejun Zhang PDF
- Math. Comp.
**70**(2001), 453-470 Request permission

## Abstract:

In this paper, we consider the linear systems arising from the standard finite element discretizations of certain second order anisotropic problems with variable coefficients on a rectangle. We study the performance of a V-cycle multigrid method applied to the finite element equations. Since the usual “regularity and approximation” assumption does not hold for the anisotropic finite element problems, the standard multigrid convergence theory cannot be applied directly. In this paper, a modification of the theory of Braess and Hackbusch will be presented. We show that the V-cycle multigrid iteration with a line smoother is a uniform contraction in the energy norm. In the verification of the hypotheses in our theory, we use a weighted $L^2$-norm estimate for the error in the Galerkin finite element approximation and a smoothing property of the line smoothers which is proved in this paper.## References

- I. Babuška and A. K. Aziz,
*On the angle condition in the finite element method*, SIAM J. Numer. Anal.**13**(1976), no. 2, 214–226. MR**455462**, DOI 10.1137/0713021 - S. Minakshi Sundaram,
*On non-linear partial differential equations of the hyperbolic type*, Proc. Indian Acad. Sci., Sect. A.**9**(1939), 495–503. MR**0000089** - D. Braess and W. Hackbusch,
*A new convergence proof for the multigrid method including the $V$-cycle*, SIAM J. Numer. Anal.**20**(1983), no. 5, 967–975. MR**714691**, DOI 10.1137/0720066 - James H. Bramble and Joseph E. Pasciak,
*New convergence estimates for multigrid algorithms*, Math. Comp.**49**(1987), no. 180, 311–329. MR**906174**, DOI 10.1090/S0025-5718-1987-0906174-X - James H. Bramble and Joseph E. Pasciak,
*New estimates for multilevel algorithms including the $V$-cycle*, Math. Comp.**60**(1993), no. 202, 447–471. MR**1176705**, DOI 10.1090/S0025-5718-1993-1176705-9 - James H. Bramble and Joseph E. Pasciak,
*Uniform convergence estimates for multigrid $V$-cycle algorithms with less than full elliptic regularity*, Domain decomposition methods in science and engineering (Como, 1992) Contemp. Math., vol. 157, Amer. Math. Soc., Providence, RI, 1994, pp. 17–26. MR**1262601**, DOI 10.1090/conm/157/01401 - James H. Bramble, Joseph E. Pasciak, Jun Ping Wang, and Jinchao Xu,
*Convergence estimates for multigrid algorithms without regularity assumptions*, Math. Comp.**57**(1991), no. 195, 23–45. MR**1079008**, DOI 10.1090/S0025-5718-1991-1079008-4 - M. Griebel and P. Oswald,
*Tensor product type subspace splittings and multilevel iterative methods for anisotropic problems*, Adv. Comput. Math.**4**(1995), no. 1-2, 171–206. MR**1338900**, DOI 10.1007/BF02123478 - Wolfgang Hackbusch,
*Multigrid methods and applications*, Springer Series in Computational Mathematics, vol. 4, Springer-Verlag, Berlin, 1985. MR**814495**, DOI 10.1007/978-3-662-02427-0 - P. W. Hemker,
*Multigrid methods for problems with a small parameter in the highest derivative*, Numerical analysis (Dundee, 1983) Lecture Notes in Math., vol. 1066, Springer, Berlin, 1984, pp. 106–121. MR**760459**, DOI 10.1007/BFb0099520 - Nicolas Neuss,
*$V$-cycle convergence with unsymmetric smoothers and application to an anisotropic model problem*, SIAM J. Numer. Anal.**35**(1998), no. 3, 1201–1212. MR**1619887**, DOI 10.1137/S0036142996310848 - Rob Stevenson,
*New estimates of the contraction number of $V$-cycle multi-grid with applications to anisotropic equations*, Incomplete decomposition ($\textrm {ILU}$)—algorithms, theory and applications (Kiel, 1992) Notes Numer. Fluid Mech., vol. 41, Friedr. Vieweg, Braunschweig, 1993, pp. 159–167. MR**1232481** - Rob Stevenson,
*Robustness of multi-grid applied to anisotropic equations on convex domains and on domains with re-entrant corners*, Numer. Math.**66**(1993), no. 3, 373–398. MR**1246963**, DOI 10.1007/BF01385703 - Rob Stevenson,
*Modified ILU as a smoother*, Numer. Math.**68**(1994), no. 2, 295–309. MR**1283344**, DOI 10.1007/s002110050063 - Rob Stevenson,
*Robust multi-grid with $7$-point ILU smoothing*, Multigrid methods, IV (Amsterdam, 1993) Internat. Ser. Numer. Math., vol. 116, Birkhäuser, Basel, 1994, pp. 295–307. MR**1301134** - R. P. Stevenson,
*Robustness of the additive and multiplicative frequency decomposition multi-level method*, Computing**54**(1995), no. 4, 331–346 (English, with English and German summaries). MR**1334615**, DOI 10.1007/BF02238231 - G. Wittum,
*Linear iterations as smoothers in multigrid methods: theory with applications to incomplete decompositions*, IMPACT Comput. Sci. Eng.**1**(1989), 180–215. - Gabriel Wittum,
*On the robustness of $\textrm {ILU}$ smoothing*, SIAM J. Sci. Statist. Comput.**10**(1989), no. 4, 699–717. MR**1000741**, DOI 10.1137/0910043 - Jinchao Xu,
*Iterative methods by space decomposition and subspace correction*, SIAM Rev.**34**(1992), no. 4, 581–613. MR**1193013**, DOI 10.1137/1034116 - Harry Yserentant,
*Old and new convergence proofs for multigrid methods*, Acta numerica, 1993, Acta Numer., Cambridge Univ. Press, Cambridge, 1993, pp. 285–326. MR**1224685**, DOI 10.1017/S0962492900002385

## Additional Information

**James H. Bramble**- Affiliation: Department of Mathematics, Texas A&M University, College Station, TX 77843
- Email: bramble@math.tamu.edu
**Xuejun Zhang**- Affiliation: Department of Mathematics, Texas A&M University, College Station, TX 77843
- Email: xzhang@math.tamu.edu
- Received by editor(s): December 4, 1997
- Received by editor(s) in revised form: June 23, 1998, and April 6, 1999
- Published electronically: February 21, 2000
- Additional Notes: The work of the first author was partially supported by the National Science Foundation under grant #DMS-9626567, and the work of the second author was partially supported by the National Science Foundation under Grant #DMS-9805590.
- © Copyright 2000 American Mathematical Society
- Journal: Math. Comp.
**70**(2001), 453-470 - MSC (2000): Primary 65N30; Secondary 65F10
- DOI: https://doi.org/10.1090/S0025-5718-00-01222-9
- MathSciNet review: 1709148