Tenth degree number fields with quintic fields having one real place
HTML articles powered by AMS MathViewer
- by Schehrazad Selmane;
- Math. Comp. 70 (2001), 845-851
- DOI: https://doi.org/10.1090/S0025-5718-00-01232-1
- Published electronically: July 13, 2000
- PDF | Request permission
Abstract:
In this paper, we enumerate all number fields of degree $10$ of discriminant smaller than $10^{11}$ in absolute value containing a quintic field having one real place. For each one of the $21509$ (resp. $18167)$ found fields of signature $(0,5)$ (resp. $(2,4))$ the field discriminant, the quintic field discriminant, a polynomial defining the relative quadratic extension, the corresponding relative discriminant, the corresponding polynomial over $\mathbb {Q}$, and the Galois group of the Galois closure are given. In a supplementary section, we give the first coincidence of discriminant of $19$ (resp. $20)$ nonisomorphic fields of signature $(0,5)$ (resp. $(2,4))$.References
- M. Daberkow, C. Fieker, J. Klüners, M. Pohst, K. Roegner, M. Schörnig, and K. Wildanger, KANT V4, J. Symbolic Comput. 24 (1997), no. 3-4, 267–283. Computational algebra and number theory (London, 1993). MR 1484479, DOI 10.1006/jsco.1996.0126
- F. Diaz y Diaz, Private communication to the author.
- F. Diaz y Diaz, A table of totally real quintic number fields, Math. Comp. 56 (1991), no. 194, 801–808, S1–S12. MR 1068820, DOI 10.1090/S0025-5718-1991-1068820-3
- Jacques Martinet, Methodes géométriques dans la recherche des petits discriminants, Séminaire de théorie des nombres, Paris 1983–84, Progr. Math., vol. 59, Birkhäuser Boston, Boston, MA, 1985, pp. 147–179 (French). MR 902831
- M. Pohst, On computing isomorphisms of equation orders, Math. Comp. 48 (1987), no. 177, 309–314. MR 866116, DOI 10.1090/S0025-5718-1987-0866116-2
- Schehrazad Selmane, Non-primitive number fields of degree eight and of signature $(2,3)$, $(4,2)$ and $(6,1)$ with small discriminant, Math. Comp. 68 (1999), no. 225, 333–344. MR 1489974, DOI 10.1090/S0025-5718-99-00998-9
- Sc. Selmane, Quadratic extensions of totally real quintic fields, Math. Comp. (to appear).
Bibliographic Information
- Schehrazad Selmane
- Affiliation: University of Sciences and Technology (U.S.T.H.B), Institut of Mathematics, B.P. 32 El Alia, Bab-Ezzouar, 16111, Algiers, Algeria
- Email: sc_selmane@hotmail.com
- Received by editor(s): November 3, 1998
- Received by editor(s) in revised form: April 27, 1999
- Published electronically: July 13, 2000
- © Copyright 2000 American Mathematical Society
- Journal: Math. Comp. 70 (2001), 845-851
- MSC (2000): Primary 11R11, 11R29, 11Y40
- DOI: https://doi.org/10.1090/S0025-5718-00-01232-1
- MathSciNet review: 1709158