Approximation orders for natural splines in arbitrary dimensions
HTML articles powered by AMS MathViewer
- by Tim Gutzmer and Jens Markus Melenk;
- Math. Comp. 70 (2001), 699-703
- DOI: https://doi.org/10.1090/S0025-5718-00-01299-0
- Published electronically: October 18, 2000
- PDF | Request permission
Abstract:
Based on variational properties, we generalize the approximation properties of the univariate natural cubic spline to splines in arbitrary dimensions.References
- Robert A. Adams, Sobolev spaces, Pure and Applied Mathematics, Vol. 65, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 450957
- Marc Atteia, Fonctions “spline” et noyaux reproduisants d’Aronszajn-Bergman, Rev. Française Informat. Recherche Opérationnelle 4 (1970), no. no. , no. R-3, 31–43 (French). MR 300061
- Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, Texts in Applied Mathematics, vol. 15, Springer-Verlag, New York, 1994. MR 1278258, DOI 10.1007/978-1-4757-4338-8
- Saunders MacLane, Steinitz field towers for modular fields, Trans. Amer. Math. Soc. 46 (1939), 23–45. MR 17, DOI 10.1090/S0002-9947-1939-0000017-3
- Jean Duchon, Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér. 10 (1976), no. no. , no. R-3, 5–12 (French, with English summary). MR 470565
- Jean Duchon, Sur l’erreur d’interpolation des fonctions de plusieurs variables par les $D^{m}$-splines, RAIRO Anal. Numér. 12 (1978), no. 4, 325–334, vi (French, with English summary). MR 519016, DOI 10.1051/m2an/1978120403251
- Jean Meinguet, Multivariate interpolation at arbitrary points made simple, Z. Angew. Math. Phys. 30 (1979), no. 2, 292–304 (English, with French summary). MR 535987, DOI 10.1007/BF01601941
- M. J. D. Powell, The uniform convergence of thin plate spline interpolation in two dimensions, Numer. Math. 68 (1994), no. 1, 107–128. MR 1278451, DOI 10.1007/s002110050051
- Robert Schaback, Radial basis functions viewed from cubic splines, Multivariate approximation and splines (Mannheim, 1996) Internat. Ser. Numer. Math., vol. 125, Birkhäuser, Basel, 1997, pp. 245–258. MR 1485009, DOI 10.1007/978-3-0348-8871-4_{2}0
- R. Schaback, Improved error bounds for scattered data interpolation by radial basis functions, Math. Comp. 68 (1999), no. 225, 201–216. MR 1604379, DOI 10.1090/S0025-5718-99-01009-1
Bibliographic Information
- Tim Gutzmer
- Affiliation: Seminar für Angewandte Mathematik, ETH Zürich, CH-8092 Zürich
- Email: TGUTZMER@sairgroup.com
- Jens Markus Melenk
- Affiliation: Seminar für Angewandte Mathematik, ETH Zürich, CH-8092 Zürich
- MR Author ID: 613978
- ORCID: 0000-0001-9024-6028
- Email: melenk@sam.math.ethz.ch
- Received by editor(s): July 13, 1999
- Published electronically: October 18, 2000
- © Copyright 2000 American Mathematical Society
- Journal: Math. Comp. 70 (2001), 699-703
- MSC (2000): Primary 41A15; Secondary 41A63, 41A25
- DOI: https://doi.org/10.1090/S0025-5718-00-01299-0
- MathSciNet review: 1813144