Power series expansions for Mathieu functions with small arguments
HTML articles powered by AMS MathViewer
- by G. C. Kokkorakis and J. A. Roumeliotis;
- Math. Comp. 70 (2001), 1221-1235
- DOI: https://doi.org/10.1090/S0025-5718-00-01227-8
- Published electronically: February 23, 2000
- PDF | Request permission
Abstract:
Power series expansions for the even and odd angular Mathieu functions $\operatorname {Se}_m(h,\operatorname {cos}\theta )$ and $\operatorname {So}_m(h,\operatorname {cos}\theta )$, with small argument $h$, are derived for general integer values of $m$. The expansion coefficients that we evaluate are also useful for the calculation of the corresponding radial functions of any kind.References
- J. H. Richmond, Scattering by a conducting elliptic cylinder with dielectric coating, Radio Sci. 23 (1988), 1061β1066.
- R. Holland and V. P. Cable, Mathieu functions and their applications to scattering by a coated strip, IEEE Trans. Electromagn. Compat. 34 (1992), 9β16.
- T. M. Habashy, J. A. Kong and W. C. Chew, Scalar and vector Mathieu transform pairs, J. Appl. Phys. 60 (1986), 3395β3399.
- F. A. Alhargan and S. R. Judah, Frequency response characteristics of multiport planar elliptic patch, IEEE Trans. Microwave Theory Tech. 40 (1992), 1726β1730.
- D. W. Jordan and P. Smith, Nonlinear ordinary differential equations, 2nd ed., Oxford Applied Mathematics and Computing Science Series, The Clarendon Press, Oxford University Press, New York, 1987. MR 899734
- J. E. Lewis and G. Deshpande, Models on elliptical cross-section dielectric-tube waveguides, IEE J. Microwaves, Optics and Acoustics 3 (1979), 147β155.
- S. Caorsi, M. Pastorino and M. Raffetto, Electromagnetic scattering by a multilayer elliptic cylinder under transverse-magnetic illumination: series solution in terms of Mathieu functions, IEEE Trans. Antennas Propagat., 45 (1997), 926β935.
- N. B. Kakogiannos and J. A. Roumeliotis, Electromagnetic scattering from an infinite elliptic metallic cylinder coated by a circular dielectric one, IEEE Trans. Microwave Theory Tech. 38 (1990), 1660β1666.
- J. A. Roumeliotis, H. K. Manthopoulos and V. K. Manthopoulos, Electromagnetic scattering from an infinite circular metallic cylinder coated by an elliptic dielectric one, IEEE Trans. Microwave Theory Tech. 41 (1993), 862β869.
- J. A. Roumeliotis and S. P. Savaidis, Cutoff frequencies of eccentric circular-elliptic metallic waveguides, IEEE Trans. Microwave Theory Tech. 42 (1994), 2128β2138.
- β, Scattering by an infinite circular dielectric cylinder coating eccentrically an elliptic metallic one, IEEE Trans. Antennas Propagat. 44 (1996), 757β763.
- S. P. Savaidis and J. A. Roumeliotis, Scattering by an infinite elliptic dielectric cylinder coating eccentrically a circular metallic or dielectric cylinder, IEEE Trans. Microwave Theory Tech. 45 (1997), 1792β1800.
- Garrett Birkhoff and Morgan Ward, A characterization of Boolean algebras, Ann. of Math. (2) 40 (1939), 609β610. MR 9, DOI 10.2307/1968945
- Sam Perlis, Maximal orders in rational cyclic algebras of composite degree, Trans. Amer. Math. Soc. 46 (1939), 82β96. MR 15, DOI 10.1090/S0002-9947-1939-0000015-X
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611β633. MR 16, DOI 10.2307/1968946
- E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions; Reprint of the fourth (1927) edition. MR 1424469, DOI 10.1017/CBO9780511608759
- Milton Abramowitz and Irene A. Stegun (eds.), Handbook of mathematical functions with formulas, graphs, and mathematical tables, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York; John Wiley & Sons, Inc., New York, 1984. Reprint of the 1972 edition; Selected Government Publications. MR 757537
- R. B. Shirts, The computation of eigenvalues and solutions of Mathieuβs differential equation for noninteger order, ACM Trans. Math. Software 19 (1993), 377β390.
- β, Algorithm 721 MTIEU1 and MTIEU2: Two subroutines to compute eigenvalues and solutions to Mathieuβs differential equation for noninteger and integer order, ACM Trans. Math. Software 19 (1993), 391β406.
- N. Toyama and K. Shogen, Computation of the value of the even and odd Mathieu functions of order $N$ for a given parameter $S$ and an argument $X$, IEEE Trans. Antennas and Propagation 32 (1984), no.Β 5, 537β539. MR 748375, DOI 10.1109/TAP.1984.1143362
- Delft Numerical Analysis Group, On the computation of Mathieu functions, J. Engrg. Math. 7 (1973), 39β61. MR 367337, DOI 10.1007/BF01535268
- S. R. Rengarajan and J. E. Lewis, Mathieu functions of integral orders and real arguments, IEEE Trans. Microwave Theory Tech. 28 (1980), 276β277.
- D. S. Clemm, Characteristic values and associated solutions of Mathieuβs differential equation, Comm. Assoc. Comput. Mach. 12 (1969), 399β407.
- W. R. Leeb, Algorithm 537: Characteristic values of Mathieuβs differential equation, ACM Trans. Math. Software 5 (1979), 112β117.
- Fayez A. Alhargan, A complete method for the computations of Mathieu characteristic numbers of integer orders, SIAM Rev. 38 (1996), no.Β 2, 239β255. MR 1391228, DOI 10.1137/1038040
- Hanan Rubin, Anecdote on power series expansions of Mathieu functions, J. Math. and Phys. 43 (1964), 339β341. MR 170046
- Richard Barakat, Agnes Houston, and Elgie Levin, Power series expansions of Mathieu functions with tables of numerical results, J. Math. and Phys. 42 (1963), 200β247. MR 155024
- G. C. Kokkorakis and J. A. Roumeliotis, Acoustic eigenfrequencies in concentric spheroidal-spherical cavities, J. Sound. Vibr. 206 (1997), 287β308.
Bibliographic Information
- G. C. Kokkorakis
- Affiliation: Department of Electrical and Computer Engineering, National Technical University of Athens, Athens 15773, Greece
- J. A. Roumeliotis
- Affiliation: Department of Electrical and Computer Engineering, National Technical University of Athens, Athens 15773, Greece
- Email: iroumel@cc.ece.ntua.gr
- Received by editor(s): May 19, 1998
- Received by editor(s) in revised form: April 13, 1999, and July 8, 1999
- Published electronically: February 23, 2000
- © Copyright 2000 American Mathematical Society
- Journal: Math. Comp. 70 (2001), 1221-1235
- MSC (2000): Primary 33E10
- DOI: https://doi.org/10.1090/S0025-5718-00-01227-8
- MathSciNet review: 1709153