Inversion of circulant matrices over $\mathbf {Z}_m$
HTML articles powered by AMS MathViewer
- by Dario Bini, Gianna M. Del Corso, Giovanni Manzini and Luciano Margara;
- Math. Comp. 70 (2001), 1169-1182
- DOI: https://doi.org/10.1090/S0025-5718-00-01235-7
- Published electronically: March 24, 2000
- PDF | Request permission
Abstract:
In this paper we consider the problem of inverting an $n\times n$ circulant matrix with entries over $\mathbf {Z}_m$. We show that the algorithm for inverting circulants, based on the reduction to diagonal form by means of FFT, has some drawbacks when working over $\mathbf {Z}_m$. We present three different algorithms which do not use this approach. Our algorithms require different degrees of knowledge of $m$ and $n$, and their costs range, roughly, from $n\log n\log \log n$ to $n \log ^2n\log \log n \log m$ operations over $\mathbf {Z}_m$. Moreover, for each algorithm we give the cost in terms of bit operations. We also present an algorithm for the inversion of finitely generated bi-infinite Toeplitz matrices. The problems considered in this paper have applications to the theory of linear cellular automata.References
- Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman, The design and analysis of computer algorithms, Addison-Wesley Series in Computer Science and Information Processing, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1975. Second printing. MR 413592
- Dario Bini and Victor Y. Pan, Polynomial and matrix computations. Vol. 1, Progress in Theoretical Computer Science, Birkhäuser Boston, Inc., Boston, MA, 1994. Fundamental algorithms. MR 1289412, DOI 10.1007/978-1-4612-0265-3
- P. Chaudhuri, D. Chowdhury, S. Nandi, and S. Chattopadhyay. Additive Cellular Automata Theory and Applications, Vol. 1. IEEE Press, 1997.
- Henri Cohen, A course in computational algebraic number theory, Graduate Texts in Mathematics, vol. 138, Springer-Verlag, Berlin, 1993. MR 1228206, DOI 10.1007/978-3-662-02945-9
- Philip Feinsilver, Circulants, inversion of circulants, and some related matrix algebras, Linear Algebra Appl. 56 (1984), 29–43. MR 724546, DOI 10.1016/0024-3795(84)90111-3
- Puhua Guan and Yu He, Exact results for deterministic cellular automata with additive rules, J. Statist. Phys. 43 (1986), no. 3-4, 463–478. MR 845724, DOI 10.1007/BF01020648
- A. S. Householder, The numerical treatment of a single nonlinear equation, International Series in Pure and Applied Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-London, 1970. MR 388759
- Masanobu Itô, Nobuyasu Ôsato, and Masakazu Nasu, Linear cellular automata over $Z_{m}$, J. Comput. System Sci. 27 (1983), no. 1, 125–140. MR 730919, DOI 10.1016/0022-0000(83)90033-8
- A. Lempel, G. Seroussi, and S. Winograd, On the complexity of multiplication in finite fields, Theoret. Comput. Sci. 22 (1983), no. 3, 285–296. MR 693061, DOI 10.1016/0304-3975(83)90108-1
- A. K. Lenstra and H. W. Lenstra. Algorithms in number theory, In J. van Leeuwen, editor, Handbook of Theoretical Computer Science. Volume A: Algorithms and Complexity. The MIT Press/Elsevier, 1990.
- G. Manzini and L. Margara. A complete and efficiently computable topological classification of ${D}$-dimensional linear cellular automata over ${Z}_m$. Theoretical Computer Science, 221(2) (1999), 157–177.
- Giovanni Manzini and Luciano Margara, Invertible linear cellular automata over $\textbf {Z}_m$: algorithmic and dynamical aspects, J. Comput. System Sci. 56 (1998), no. 1, 60–67. MR 1610931, DOI 10.1006/jcss.1997.1535
- Olivier Martin, Andrew M. Odlyzko, and Stephen Wolfram, Algebraic properties of cellular automata, Comm. Math. Phys. 93 (1984), no. 2, 219–258. MR 742194
- Leonard Eugene Dickson, New First Course in the Theory of Equations, John Wiley & Sons, Inc., New York, 1939. MR 2
- A. Schönhage and V. Strassen, Schnelle Multiplikation grosser Zahlen, Computing (Arch. Elektron. Rechnen) 7 (1971), 281–292 (German, with English summary). MR 292344, DOI 10.1007/bf02242355
- Satoshi Takahashi, Self-similarity of linear cellular automata, J. Comput. System Sci. 44 (1992), no. 1, 114–140. MR 1161108, DOI 10.1016/0022-0000(92)90007-6
Bibliographic Information
- Dario Bini
- Affiliation: Dipartimento di Matematica, Università di Pisa, Pisa, Italy
- MR Author ID: 37060
- Email: bini@dm.unipi.it
- Gianna M. Del Corso
- Affiliation: Istituto di Matematica Computazionale-CNR, Pisa, Italy
- Email: delcorso@imc.pi.cnr.it
- Giovanni Manzini
- Affiliation: Dip. Scienze e Tecnologie Avanzate, Università del Piemonte Orientale, and IMC-CNR, Pisa, Italy
- Email: manzini@mfn.unipmn.it
- Luciano Margara
- Affiliation: Dipartimento di Informatica, Università di Bologna, Bologna, Italy
- Email: margara@cs.unibo.it
- Received by editor(s): December 17, 1998
- Received by editor(s) in revised form: June 28, 1999
- Published electronically: March 24, 2000
- Additional Notes: The first author was supported by Progetto Coordinato GNIM-CNR Toeplitz-like matrices: structures algorithms and applications.
A preliminary version of this paper has been presented to the 25th International Colloquium on Automata, Languages and Programming (ICALP ’98) - © Copyright 2000 American Mathematical Society
- Journal: Math. Comp. 70 (2001), 1169-1182
- MSC (2000): Primary 15A33, 65F05
- DOI: https://doi.org/10.1090/S0025-5718-00-01235-7
- MathSciNet review: 1710660