Computing class fields via the Artin map
Author:
Claus Fieker
Journal:
Math. Comp. 70 (2001), 1293-1303
MSC (2000):
Primary 11Y40; Secondary 11R37
DOI:
https://doi.org/10.1090/S0025-5718-00-01255-2
Published electronically:
March 24, 2000
MathSciNet review:
1826583
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Based on an explicit representation of the Artin map for Kummer extensions, we present a method to compute arbitrary class fields. As in the proofs of the existence theorem, the problem is first reduced to the case where the field contains sufficiently many roots of unity. Using Kummer theory and an explicit version of the Artin reciprocity law we show how to compute class fields in this case. We conclude with several examples.
- Vincenzo Acciaro and Jürgen Klüners, Computing automorphisms of abelian number fields, Math. Comp. 68 (1999), no. 227, 1179–1186. MR 1648426, DOI https://doi.org/10.1090/S0025-5718-99-01084-4
- Eric Bach and Jonathan Sorenson, Explicit bounds for primes in residue classes, Math. Comp. 65 (1996), no. 216, 1717–1735. MR 1355006, DOI https://doi.org/10.1090/S0025-5718-96-00763-6
- H. Bauer. Zur Berechnung von Hilbertschen Klassenkörpern mit Hilfe von Stark-Einheiten. Diploma thesis, Technische Universität Berlin, 1998.
- Henri Cohen, A course in computational algebraic number theory, Graduate Texts in Mathematics, vol. 138, Springer-Verlag, Berlin, 1993. MR 1228206
- H. Cohen. Advanced topics in computational number theory, Volume 193 of Graduate Texts in Mathematics. Springer, 1 edition, 1999.
- H. Cohen, F. Diaz y Diaz, and M. Olivier, Computing ray class groups, conductors and discriminants, Math. Comp. 67 (1998), no. 222, 773–795. MR 1443117, DOI https://doi.org/10.1090/S0025-5718-98-00912-0
- M. Daberkow and M. Pohst, On the computation of Hilbert class fields, J. Number Theory 69 (1998), no. 2, 213–230. MR 1617325, DOI https://doi.org/10.1006/jnth.1997.2208
- David S. Dummit, Jonathan W. Sands, and Brett A. Tangedal, Computing Stark units for totally real cubic fields, Math. Comp. 66 (1997), no. 219, 1239–1267. MR 1415801, DOI https://doi.org/10.1090/S0025-5718-97-00852-1
- C. Fieker. Über relative Normgleichungen in algebraischen Zahlkörpern. PhD thesis, Technische Universität Berlin, 1997.
- Helmut Hasse, Vorlesungen über Klassenkörpertheorie, Thesaurus Mathematicae, Band 6, Physica-Verlag, Würzburg, 1967 (German). MR 0220700
- Gerald J. Janusz, Algebraic number fields, 2nd ed., Graduate Studies in Mathematics, vol. 7, American Mathematical Society, Providence, RI, 1996. MR 1362545
- KANT Group. KANT V4. J. Symb. Comp., 24:267–283, 1997.
- J. Klüners. Über die Berechnung von Automorphismen und Teilkörpern algebraischer Zahlkörper. PhD thesis, Technische Universität Berlin, 1997.
- H. Koch. Number Theory II, volume 62 of Encyclopaedia of Mathematical Sciences. Springer, Berlin, 1992.
- Serge Lang, Algebraic number theory, 2nd ed., Graduate Texts in Mathematics, vol. 110, Springer-Verlag, New York, 1994. MR 1282723
- Jürgen Neukirch, Algebraische Zahlentheorie, Ein Jahrhundert Mathematik 1890–1990, Dokumente Gesch. Math., vol. 6, Friedr. Vieweg, Braunschweig, 1990, pp. 587–628 (German). MR 1085974
- S. Pauli. Zur Berechnung von Strahlklassengruppen. Diploma thesis, Technische Universität Berlin, 1996.
- X.-F. Roblot. Algorithmes de factorisation dans les corps de nombres et applications de la conjecture de Stark à la construction des corps de classes de rayon. PhD thesis, Université Bordeaux I, 1997.
- Reinhard Schertz, Zur expliziten Berechnung von Ganzheitsbasen in Strahlklassenkörpern über einem imaginär-quadratischen Zahlkörper, J. Number Theory 34 (1990), no. 1, 41–53 (German, with English summary). MR 1039766, DOI https://doi.org/10.1016/0022-314X%2890%2990051-R
- I. R. Shafarevich. A new proof of the Kronecker-Weber theorem. In Collected mathematical papers, pages 54–58. Springer, 1989.
Retrieve articles in Mathematics of Computation with MSC (2000): 11Y40, 11R37
Retrieve articles in all journals with MSC (2000): 11Y40, 11R37
Additional Information
Claus Fieker
Affiliation:
Fachbereich 3, Mathematik MA 8–1, Technische Universität Berlin, Straße des 17. Juni 136, D-10623 Berlin, F.R.G.
Email:
fieker@math.tu-berlin.de
Keywords:
Computational algebraic number theory,
class field theory,
Artin reciprocity
Received by editor(s):
April 6, 1999
Received by editor(s) in revised form:
August 16, 1999
Published electronically:
March 24, 2000
Article copyright:
© Copyright 2000
American Mathematical Society