Mathematics of Computation

Published by the American Mathematical Society since 1960 (published as Mathematical Tables and other Aids to Computation 1943-1959), Mathematics of Computation is devoted to research articles of the highest quality in computational mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2024 MCQ for Mathematics of Computation is 1.78.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Continued fractions in local fields, II
HTML articles powered by AMS MathViewer

by Jerzy Browkin;
Math. Comp. 70 (2001), 1281-1292
DOI: https://doi.org/10.1090/S0025-5718-00-01296-5
Published electronically: October 18, 2000

Abstract:

The present paper is a continuation of an earlier work by the author. We propose some new definitions of $p$-adic continued fractions. At the end of the paper we give numerical examples illustrating these definitions. It turns out that for every $m,$ $1<m<5000,\ 5\nmid m$ if $\sqrt {m}\in \mathbb {Q} _{5}\setminus \mathbb {Q},$ then $\sqrt {m}$ has a periodic continued fraction expansion. The same is not true in $\mathbb {Q}_{p}$ for some larger values of $p.$
References
  • P.-G. Becker, Periodizitätseigenschaften $p$-adischer Kettenbrüche, Elem. Math. 45 (1990), no. 1, 1–8 (German). MR 1028174
  • Edmondo Bedocchi, A note on $p$-adic continued fractions, Ann. Mat. Pura Appl. (4) 152 (1988), 197–207 (Italian, with English summary). MR 980980, DOI 10.1007/BF01766149
  • Edmondo Bedocchi, Remarks on periods of $p$-adic continued fractions, Boll. Un. Mat. Ital. A (7) 3 (1989), no. 2, 209–214 (English, with Italian summary). MR 1008593
  • Edmondo Bedocchi, Sur le développement de $\sqrt m$ en fraction continue $p$-adique, Manuscripta Math. 67 (1990), no. 2, 187–195 (French, with English summary). MR 1042237, DOI 10.1007/BF02568429
  • Edmondo Bedocchi, Fractions continues $p$-adiques: périodes de longueur paire, Boll. Un. Mat. Ital. A (7) 7 (1993), no. 2, 259–265 (French, with Italian summary). MR 1234077
  • Jerzy Browkin, Continued fractions in local fields. I, Demonstratio Math. 11 (1978), no. 1, 67–82. MR 506059
  • P. Bundschuh, $p$-adische Kettenbrüche und Irrationalität $p$-adischer Zahlen, Elem. Math. 32 (1977), no. 2, 36–40 (German). MR 453620
  • Alice A. Deanin, Periodicity of $P$-adic continued fraction expansions, J. Number Theory 23 (1986), no. 3, 367–387. MR 846967, DOI 10.1016/0022-314X(86)90082-X
  • Vichian Laohakosol, A characterization of rational numbers by $p$-adic Ruban continued fractions, J. Austral. Math. Soc. Ser. A 39 (1985), no. 3, 300–305. MR 802720
  • A. A. Ruban, Certain metric properties of the $p$-adic numbers, Sibirsk. Mat. Ž. 11 (1970), 222–227 (Russian). MR 260700
  • Th. Schneider, Über $p$-adische Kettenbrüche, Symposia Mathematica, Vol. IV (INDAM, Rome, 1968/69) Academic Press, London-New York, 1970, pp. 181–189 (German). MR 272720
  • F. Tilborgs, Periodic $p$-adic continued fractions, Simon Stevin 64 (1990), 383-390.
  • Lian Xiang Wang, $p$-adic continued fractions. I, II, Sci. Sinica Ser. A 28 (1985), no. 10, 1009–1017, 1018–1023. MR 866457
  • Lian Xiang Wang, $p$-adic continued fractions. I, II, Sci. Sinica Ser. A 28 (1985), no. 10, 1009–1017, 1018–1023. MR 866457
  • B. M. M. de Weger, Approximation lattices of $p$-adic numbers, J. Number Theory 24 (1986), no. 1, 70–88. MR 852192, DOI 10.1016/0022-314X(86)90059-4
  • B. M. M. de Weger, Periodicity of $p$-adic continued fractions, Elem. Math. 43 (1988), no. 4, 112–116. MR 952010
Similar Articles
  • Retrieve articles in Mathematics of Computation with MSC (2000): 11J70, 11S85
  • Retrieve articles in all journals with MSC (2000): 11J70, 11S85
Bibliographic Information
  • Jerzy Browkin
  • Affiliation: Institute of Mathematics, University of Warsaw, ul. Banacha 2, PL–02–097 Warsaw, Poland
  • Email: bro@mimuw.edu.pl
  • Received by editor(s): August 25, 1999
  • Published electronically: October 18, 2000
  • © Copyright 2000 American Mathematical Society
  • Journal: Math. Comp. 70 (2001), 1281-1292
  • MSC (2000): Primary 11J70; Secondary 11S85
  • DOI: https://doi.org/10.1090/S0025-5718-00-01296-5
  • MathSciNet review: 1826582