A posteriori error control in low-order finite element discretisations of incompressible stationary flow problems
HTML articles powered by AMS MathViewer
- by Carsten Carstensen and Stefan A. Funken;
- Math. Comp. 70 (2001), 1353-1381
- DOI: https://doi.org/10.1090/S0025-5718-00-01264-3
- Published electronically: October 27, 2000
- PDF | Request permission
Abstract:
Computable a posteriori error bounds and related adaptive mesh-refining algorithms are provided for the numerical treatment of monotone stationary flow problems with a quite general class of conforming and nonconforming finite element methods. A refined residual-based error estimate generalises the works of Verfürth; Dari, Duran and Padra; Bao and Barrett. As a consequence, reliable and efficient averaging estimates can be established on unstructured grids. The symmetric formulation of the incompressible flow problem models certain nonNewtonian flow problems and the Stokes problem with mixed boundary conditions. A Helmholtz decomposition avoids any regularity or saturation assumption in the mathematical error analysis. Numerical experiments for the partly nonconforming method analysed by Kouhia and Stenberg indicate efficiency of related adaptive mesh-refining algorithms.References
- J. Alberty, C. Carstensen, S.A. Funken: Remarks around 50 lines of Matlab: short finite element implementation. Berichtsreihe des Mathematischen Seminars Kiel, Technical report 98–11 Universität Kiel (1998). Num. Alg. 20 (1999) 117-137. http://www.numerik.uni-kiel.de/reports/1998/98-11.html)
- A. Alonso, Error estimators for a mixed method, Numer. Math. 74 (1996), no. 4, 385–395. MR 1414415, DOI 10.1007/s002110050222
- Weizhu Bao and John W. Barrett, A priori and a posteriori error bounds for a nonconforming linear finite element approximation of a non-Newtonian flow, RAIRO Modél. Math. Anal. Numér. 32 (1998), no. 7, 843–858 (English, with English and French summaries). MR 1654432, DOI 10.1051/m2an/1998320708431
- Randolph E. Bank and Bruno D. Welfert, A posteriori error estimates for the Stokes problem, SIAM J. Numer. Anal. 28 (1991), no. 3, 591–623. MR 1098409, DOI 10.1137/0728033
- Franco Brezzi and Michel Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, vol. 15, Springer-Verlag, New York, 1991. MR 1115205, DOI 10.1007/978-1-4612-3172-1
- Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, Texts in Applied Mathematics, vol. 15, Springer-Verlag, New York, 1994. MR 1278258, DOI 10.1007/978-1-4757-4338-8
- Carsten Carstensen, A posteriori error estimate for the mixed finite element method, Math. Comp. 66 (1997), no. 218, 465–476. MR 1408371, DOI 10.1090/S0025-5718-97-00837-5
- —: Quasi interpolation and a posteriori error analysis in finite element method. $M^2$AN Math. Model Numer. Anal. 33 (1999) 1187–1202.
- C. Carstensen, S. Bartels: Averaging techniques yield reliable error control in low order finite element methods on unstructured grids. Berichtsreihe des Mathematischen Seminars Kiel, Technical report 99–11 Universität Kiel (1999) http://www.numerik.uni-kiel.de/reports/1999/99-11.html
- Carsten Carstensen and Georg Dolzmann, A posteriori error estimates for mixed FEM in elasticity, Numer. Math. 81 (1998), no. 2, 187–209. MR 1657768, DOI 10.1007/s002110050389
- C. Carstensen, S. Jansche: A posteriori error estimates for finite element discretization of the Stokes problem. Berichtsreihe des Mathematischen Seminars Kiel, Technical report 97–9 Universität Kiel (1997) (unpublished) http://www.numerik.uni-kiel.de/reports/1997/97-9.html
- Carsten Carstensen and Rüdiger Verfürth, Edge residuals dominate a posteriori error estimates for low order finite element methods, SIAM J. Numer. Anal. 36 (1999), no. 5, 1571–1587. MR 1706735, DOI 10.1137/S003614299732334X
- Philippe G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 520174
- Ph. Clément, Approximation by finite element functions using local regularization, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér. 9 (1975), no. no. , no. R-2, 77–84 (English, with French summary). MR 400739
- Enzo Dari, Ricardo Durán, and Claudio Padra, Error estimators for nonconforming finite element approximations of the Stokes problem, Math. Comp. 64 (1995), no. 211, 1017–1033. MR 1284666, DOI 10.1090/S0025-5718-1995-1284666-9
- Kenneth Eriksson, Don Estep, Peter Hansbo, and Claes Johnson, Introduction to adaptive methods for differential equations, Acta numerica, 1995, Acta Numer., Cambridge Univ. Press, Cambridge, 1995, pp. 105–158. MR 1352472, DOI 10.1017/S0962492900002531
- Richard S. Falk and Mary E. Morley, Equivalence of finite element methods for problems in elasticity, SIAM J. Numer. Anal. 27 (1990), no. 6, 1486–1505. MR 1080333, DOI 10.1137/0727086
- Vivette Girault and Pierre-Arnaud Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. MR 851383, DOI 10.1007/978-3-642-61623-5
- Lars Hörmander, Linear partial differential operators, Die Grundlehren der mathematischen Wissenschaften, Band 116, Springer-Verlag, Berlin-Göttingen-Heidelberg; Academic Press, Inc., Publishers, New York, 1963. MR 161012, DOI 10.1007/978-3-642-46175-0
- Reijo Kouhia and Rolf Stenberg, A linear nonconforming finite element method for nearly incompressible elasticity and Stokes flow, Comput. Methods Appl. Mech. Engrg. 124 (1995), no. 3, 195–212. MR 1343077, DOI 10.1016/0045-7825(95)00829-P
- J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. Vol. I, Die Grundlehren der mathematischen Wissenschaften, Band 181, Springer-Verlag, New York-Heidelberg, 1972. Translated from the French by P. Kenneth. MR 350177
- Claudio Padra, A posteriori error estimators for nonconforming approximation of some quasi-Newtonian flows, SIAM J. Numer. Anal. 34 (1997), no. 4, 1600–1615. MR 1461798, DOI 10.1137/S0036142994278322
- A. Quateroni, A. Valli: Numerical Approximation of Partial Differential Equations. Springer, Berlin, 1994.
- R. Temam: Navier-Stokes Equations. North-Holland, Amsterdam, 1985.
- R. Verfürth: A review of a posteriori error estimation and adaptive mesh-refinement techniques. Teubner Skripten zur Numerik. B.G. Willey-Teubner, Stuttgart, 1996.
- R. Verfürth, A posteriori error estimators for the Stokes equations, Numer. Math. 55 (1989), no. 3, 309–325. MR 993474, DOI 10.1007/BF01390056
- R. Verfürth, A posteriori error estimators for the Stokes equations. II. Nonconforming discretizations, Numer. Math. 60 (1991), no. 2, 235–249. MR 1133581, DOI 10.1007/BF01385723
- O. C. Zienkiewicz and J. Z. Zhu, A simple error estimator and adaptive procedure for practical engineering analysis, Internat. J. Numer. Methods Engrg. 24 (1987), no. 2, 337–357. MR 875306, DOI 10.1002/nme.1620240206
Bibliographic Information
- Carsten Carstensen
- Affiliation: Mathematisches Seminar, Christian-Albrechts-Universität zu Kiel, Ludewig-Meyn-Str. 4, D-24098 Kiel, Germany
- Email: cc@numerik.uni-kiel.de
- Stefan A. Funken
- Affiliation: Mathematisches Seminar, Christian-Albrechts-Universität zu Kiel, Ludewig-Meyn-Str. 4, D-24098 Kiel, Germany
- Email: saf@numerik.uni-kiel.de
- Received by editor(s): July 24, 1997
- Received by editor(s) in revised form: June 2, 1999, and January 6, 2000
- Published electronically: October 27, 2000
- © Copyright 2000 American Mathematical Society
- Journal: Math. Comp. 70 (2001), 1353-1381
- MSC (2000): Primary 65N30, 76D07
- DOI: https://doi.org/10.1090/S0025-5718-00-01264-3
- MathSciNet review: 1836908