Verifying the Goldbach conjecture up to $4\cdot 10^{14}$
HTML articles powered by AMS MathViewer
- by Jörg Richstein;
- Math. Comp. 70 (2001), 1745-1749
- DOI: https://doi.org/10.1090/S0025-5718-00-01290-4
- Published electronically: July 18, 2000
- PDF | Request permission
Abstract:
Using a carefully optimized segmented sieve and an efficient checking algorithm, the Goldbach conjecture has been verified and is now known to be true up to $4\cdot 10^{14}$. The program was distributed to various workstations. It kept track of maximal values of the smaller prime $p$ in the minimal partition of the even numbers, where a minimal partition is a representation $2n = p + q$ with $2n - p’$ being composite for all $p’ < p$. The maximal prime $p$ needed in the considered interval was found to be 5569 and is needed for the partition 389965026819938 = 5569 + 389965026814369.References
- Carter Bays and Richard H. Hudson, The segmented sieve of Eratosthenes and primes in arithmetic progressions to $10^{12}$, Nordisk Tidskr. Informationsbehandling (BIT) 17 (1977), no. 2, 121–127. MR 447090, DOI 10.1007/bf01932283
- Jan Bohman and Carl-Erik Fröberg, Numerical results on the Goldbach conjecture, Nordisk Tidskr. Informationsbehandling (BIT) 15 (1975), no. 3, 239–243. MR 389814, DOI 10.1007/bf01933655
- Richard P. Brent, The first occurrence of large gaps between successive primes, Math. Comp. 27 (1973), 959–963. MR 330021, DOI 10.1090/S0025-5718-1973-0330021-0
- Jing Run Chen and Tian Ze Wang, On the Goldbach problem, Acta Math. Sinica 32 (1989), no. 5, 702–718 (Chinese). MR 1046491
- J. M. Deshouillers, H. J. J. te Riele, Y. Saouter New experimental results concerning the Goldbach conjecture, Proc. 3rd Int. Symp. on Algorithmic Number Theory, LNCS 1423 (1998), 204–215.
- P. H. Fuss, Correspondance mathématique et physique de quelques célèbres géomètres du XVIII$^e$ siècle, tome I, St. Pétersbourg, (1843), 127+135.
- A. Granville, J. van de Lune, and H. J. J. te Riele, Checking the Goldbach conjecture on a vector computer, Number theory and applications (Banff, AB, 1988) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 265, Kluwer Acad. Publ., Dordrecht, 1989, pp. 423–433. MR 1123087
- Gerhard Jaeschke, On strong pseudoprimes to several bases, Math. Comp. 61 (1993), no. 204, 915–926. MR 1192971, DOI 10.1090/S0025-5718-1993-1192971-8
- A. P. Juškevič, Christian Goldbach: 1690–1764, Vita mathematica, Birkhäuser Basel (1994), 161.
- Hans Riesel, Prime numbers and computer methods for factorization, 2nd ed., Progress in Mathematics, vol. 126, Birkhäuser Boston, Inc., Boston, MA, 1994. MR 1292250, DOI 10.1007/978-1-4612-0251-6
- Yannick Saouter, Checking the odd Goldbach conjecture up to $10^{20}$, Math. Comp. 67 (1998), no. 222, 863–866. MR 1451327, DOI 10.1090/S0025-5718-98-00928-4
- Mok-kong Shen, On checking the Goldbach conjecture, Nordisk Tidskr. Informationsbehandling (BIT) 4 (1964), 243–245. MR 172834, DOI 10.1007/bf01939515
- Matti K. Sinisalo, Checking the Goldbach conjecture up to $4\cdot 10^{11}$, Math. Comp. 61 (1993), no. 204, 931–934. MR 1185250, DOI 10.1090/S0025-5718-1993-1185250-6
- M. L. Stein, P. R. Stein, Experimental results on additive 2 bases, BIT 38 (1965), 427–434.
Bibliographic Information
- Jörg Richstein
- Affiliation: Institut für Informatik, Fachbereich Mathematik, Justus-Liebig-Universität, Gies- sen, Germany
- Email: Joerg.Richstein@informatik.uni-giessen.de
- Received by editor(s): October 14, 1999
- Received by editor(s) in revised form: January 6, 2000
- Published electronically: July 18, 2000
- © Copyright 2000 American Mathematical Society
- Journal: Math. Comp. 70 (2001), 1745-1749
- MSC (2000): Primary 11P32; Secondary 11-04
- DOI: https://doi.org/10.1090/S0025-5718-00-01290-4
- MathSciNet review: 1836932