Density of cubic field discriminants
HTML articles powered by AMS MathViewer
- by David P. Roberts;
- Math. Comp. 70 (2001), 1699-1705
- DOI: https://doi.org/10.1090/S0025-5718-00-01291-6
- Published electronically: October 18, 2000
- PDF | Request permission
Erratum: Math. Comp. 41 (1983), 775-778.
Erratum: Math. Comp. 36 (1981), 316-317.
Erratum: Math. Comp. 36 (1981), 315-316.
Abstract:
In this paper we give a conjectural refinement of the Davenport-Heilbronn theorem on the density of cubic field discriminants. Our refinement is plausible theoretically and agrees very well with computational data.References
- I. O. Angell, A table of totally real cubic fields, Math. Comput. 30 (1976), no.Β 133, 184β187. MR 401701, DOI 10.1090/S0025-5718-1976-0401701-6
- Karim Belabas, Crible et $3$-rang des corps quadratiques, Ann. Inst. Fourier (Grenoble) 46 (1996), no.Β 4, 909β949 (French, with English and French summaries). MR 1415952, DOI 10.5802/aif.1535
- K. Belabas, A fast algorithm to compute cubic fields, Math. Comp. 66 (1997), no.Β 219, 1213β1237. MR 1415795, DOI 10.1090/S0025-5718-97-00846-6
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611β633. MR 16, DOI 10.2307/1968946
- Boris Datskovsky and David J. Wright, The adelic zeta function associated to the space of binary cubic forms. II. Local theory, J. Reine Angew. Math. 367 (1986), 27β75. MR 839123, DOI 10.1515/crll.1986.367.27
- Boris Datskovsky and David J. Wright, Density of discriminants of cubic extensions, J. Reine Angew. Math. 386 (1988), 116β138. MR 936994, DOI 10.1515/crll.1988.386.116
- C. J. Everett Jr., Annihilator ideals and representation iteration for abstract rings, Duke Math. J. 5 (1939), 623β627. MR 13
- H. Davenport and H. Heilbronn, On the density of discriminants of cubic fields. II, Proc. Roy. Soc. London Ser. A 322 (1971), no.Β 1551, 405β420. MR 491593, DOI 10.1098/rspa.1971.0075
- G. W. Fung and H. C. Williams, Errata: βOn the computation of a table of complex cubic fields with discriminant $D>-10^6$β [Math. Comp. 55 (1990), no. 191, 313β325; MR1023760 (90m:11155)], Math. Comp. 63 (1994), no.Β 207, 433. MR 1242061, DOI 10.1090/S0025-5718-1994-1242061-1
- Pascual Llorente and Jordi Quer, On totally real cubic fields with discriminant $D<10^7$, Math. Comp. 50 (1988), no.Β 182, 581β594. MR 929555, DOI 10.1090/S0025-5718-1988-0929555-8
- Yasuo Ohno, A conjecture on coincidence among the zeta functions associated with the space of binary cubic forms, Amer. J. Math. 119 (1997), no.Β 5, 1083β1094. MR 1473069, DOI 10.1353/ajm.1997.0032
- Mikio Sato and Takuro Shintani, On zeta functions associated with prehomogeneous vector spaces, Ann. of Math. (2) 100 (1974), 131β170. MR 344230, DOI 10.2307/1970844
- D. Shanks, Review of [I. O. Angell, A table of totally real cubic fields, Math. Comput. 30 (1976), 184-187], Math. Comp. 30, (1976), 670-673.
- Daniel Shanks, A survey of quadratic, cubic and quartic algebraic number fields (from a computational point of view), Proceedings of the Seventh Southeastern Conference on Combinatorics, Graph Theory, and Computing (Louisiana State Univ., Baton Rouge, La., 1976) Congress. Numer., No. XVII, Utilitas Math., Winnipeg, MB, 1976, pp.Β 15β40. MR 453691
- Takuro Shintani, On Dirichlet series whose coefficients are class numbers of integral binary cubic forms, J. Math. Soc. Japan 24 (1972), 132β188. MR 289428, DOI 10.2969/jmsj/02410132
Bibliographic Information
- David P. Roberts
- Affiliation: Department of Mathematics, Rutgers University, Piscataway, New Jersey 08854
- Address at time of publication: Division of Science and Mathematics, University of Minnesota-Morris, Morris, Minnesota 56267
- Email: roberts@mrs.umn.edu
- Received by editor(s): April 20, 1999
- Received by editor(s) in revised form: January 6, 2000
- Published electronically: October 18, 2000
- © Copyright 2000 American Mathematical Society
- Journal: Math. Comp. 70 (2001), 1699-1705
- MSC (2000): Primary 11N56, 11R16
- DOI: https://doi.org/10.1090/S0025-5718-00-01291-6
- MathSciNet review: 1836927