Localization of the first zero of the Dedekind zeta function
HTML articles powered by AMS MathViewer
- by Sami Omar;
- Math. Comp. 70 (2001), 1607-1616
- DOI: https://doi.org/10.1090/S0025-5718-01-01305-9
- Published electronically: March 7, 2001
- PDF | Request permission
Abstract:
Using Weil’s explicit formula, we propose a method to compute low zeros of the Dedekind zeta function. As an application of this method, we compute the first zero of the Dedekind zeta function associated to totally complex fields of degree less than or equal to 30 having the smallest known discriminant.References
- H. Cohen, F. Diaz y Diaz and M. Olivier, A table of totally complex number fields of small discriminants, Algorithmic Number Theory, (Lectures Notes in Computer Science; Springer Verlag, 1998), pp. 381–391.
- Henri Cohen, A course in computational algebraic number theory, Graduate Texts in Mathematics, vol. 138, Springer-Verlag, Berlin, 1993. MR 1228206, DOI 10.1007/978-3-662-02945-9
- Philip J. Davis and Philip Rabinowitz, Methods of numerical integration, Computer Science and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 448814
- William John Ellison, Les nombres premiers, Publications de l’Institut de Mathématique de l’Université de Nancago, No. IX, Hermann, Paris, 1975 (French). En collaboration avec Michel Mendès France; Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1366. MR 417077
- Eduardo Friedman, Hecke’s integral formula, Séminaire de Théorie des Nombres, 1987–1988 (Talence, 1987–1988) Univ. Bordeaux I, Talence, [1988?], pp. Exp. No. 5, 23. MR 993106
- I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London-Toronto, 1980. Corrected and enlarged edition edited by Alan Jeffrey; Incorporating the fourth edition edited by Yu. V. Geronimus [Yu. V. Geronimus] and M. Yu. Tseytlin [M. Yu. Tseĭtlin]; Translated from the Russian. MR 582453
- Serge Lang, Algebraic number theory, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London-Don Mills, Ont., 1970. MR 282947
- Edmund Landau, Vorlesungen über Zahlentheorie. Erster Band, zweiter Teil; zweiter Band; dritter Band, Chelsea Publishing Co., New York, 1969 (German). MR 250844
- A. M. Odlyzko, Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions: a survey of recent results, Sém. Théor. Nombres Bordeaux (2) 2 (1990), no. 1, 119–141 (English, with French summary). MR 1061762, DOI 10.5802/jtnb.22
- M. Pohst, The minimum discriminant of seventh degree totally real algebraic number fields, Number theory and algebra, Academic Press, New York-London, 1977, pp. 235–240. MR 466069
- G. Poitou, Minorations de discriminants, Séminaire Bourbaki, 28e année, 1975/76, n 479.
- Georges Poitou, Minorations de discriminants (d’après A. M. Odlyzko), Séminaire Bourbaki, Vol. 1975/76, 28ème année, Lecture Notes in Math., Vol. 567, Springer, Berlin-New York, 1977, pp. Exp. No. 479, pp. 136–153. MR 435033
- Emmanuel Tollis, Zeros of Dedekind zeta functions in the critical strip, Math. Comp. 66 (1997), no. 219, 1295–1321. MR 1423079, DOI 10.1090/S0025-5718-97-00871-5
Bibliographic Information
- Sami Omar
- Affiliation: Laboratoire d’Algorithmique Arithmétique, Université Bordeaux I, 351 cours de la Libération, F-33405 Talence Cedex France
- Email: omar@math.u-bordeaux.fr
- Received by editor(s): June 4, 1999
- Received by editor(s) in revised form: February 1, 2000
- Published electronically: March 7, 2001
- © Copyright 2001 American Mathematical Society
- Journal: Math. Comp. 70 (2001), 1607-1616
- MSC (2000): Primary 11R42
- DOI: https://doi.org/10.1090/S0025-5718-01-01305-9
- MathSciNet review: 1836922