Upper bounds for the prime divisors of Wendt’s determinant
HTML articles powered by AMS MathViewer
- by Anastasios Simalarides;
- Math. Comp. 71 (2002), 415-427
- DOI: https://doi.org/10.1090/S0025-5718-00-01292-8
- Published electronically: October 18, 2000
- PDF | Request permission
Abstract:
Let $c\geq 2$ be an even integer, $(3,c)=1$. The resultant $W_c$ of the polynomials $t^c-1$ and $(1+t)^c-1$ is known as Wendt’s determinant of order $c$. We prove that among the prime divisors $q$ of $W_c$ only those which divide $2^c-1$ or $L_{c/2}$ can be larger than $\theta ^{c/4}$, where $\theta =2.2487338$ and $L_n$ is the $n$th Lucas number, except when $c=20$ and $q=61$. Using this estimate we derive criteria for the nonsolvability of Fermat’s congruence.References
- David W. Boyd, The asymptotic behaviour of the binomial circulant determinant, J. Math. Anal. Appl. 86 (1982), no. 1, 30–38. MR 649851, DOI 10.1016/0022-247X(82)90250-5
- John Brillhart, D. H. Lehmer, J. L. Selfridge, Bryant Tuckerman, and S. S. Wagstaff Jr., Factorizations of $b^n \pm 1$, 2nd ed., Contemporary Mathematics, vol. 22, American Mathematical Society, Providence, RI, 1988. $b=2,3,5,6,7,10,11,12$ up to high powers. MR 996414, DOI 10.1090/conm/022
- John Brillhart, Peter L. Montgomery, and Robert D. Silverman, Tables of Fibonacci and Lucas factorizations, Math. Comp. 50 (1988), no. 181, 251–260, S1–S15. MR 917832, DOI 10.1090/S0025-5718-1988-0917832-6
- S. Chowla, Some conjectures in elementary number theory, Norske Vid. Selsk. Forh. (Trondheim) 35 (1962), 13. MR 139563
- C. J. Everett Jr., Annihilator ideals and representation iteration for abstract rings, Duke Math. J. 5 (1939), 623–627. MR 13
- Greg Fee and Andrew Granville, The prime factors of Wendt’s binomial circulant determinant, Math. Comp. 57 (1991), no. 196, 839–848. MR 1094948, DOI 10.1090/S0025-5718-1991-1094948-8
- David Ford and Vijay Jha, On Wendt’s determinant and Sophie Germain’s theorem, Experiment. Math. 2 (1993), no. 2, 113–120. MR 1259425
- I. M. Sheffer, Some properties of polynomial sets of type zero, Duke Math. J. 5 (1939), 590–622. MR 81
- Charles Helou, On Wendt’s determinant, Math. Comp. 66 (1997), no. 219, 1341–1346. MR 1423075, DOI 10.1090/S0025-5718-97-00870-3
- T. Venkatarayudu, The $7$-$15$ problem, Proc. Indian Acad. Sci., Sect. A. 9 (1939), 531. MR 1, DOI 10.1090/gsm/058
- E. Lehmer, On a resultant connected with Fermat’s Last Theorem, Bull. Amer. Math. Soc. 41 (1935), 864–867.
- Paulo Ribenboim, 13 lectures on Fermat’s last theorem, Springer-Verlag, New York-Heidelberg, 1979. MR 551363
- A. Simalarides, Applications of the theory of cyclotomic field to Fermat’s equation and congruence, Ph.D. Thesis, Athens University, Athens 1984.
- Anastasios Simalarides, Sophie Germain’s principle and Lucas numbers, Math. Scand. 67 (1990), no. 2, 167–176. MR 1096451, DOI 10.7146/math.scand.a-12327
- Albert Eagle, Series for all the roots of the equation $(z-a)^m=k(z-b)^n$, Amer. Math. Monthly 46 (1939), 425–428. MR 6, DOI 10.2307/2303037
- E. Wendt, Arithmetische Studien über den letzten Fermatschen Satz, welcher aussagt, dass die Gleichung $a^n=b^n+c^n$, für $n>2$ in ganzen Zahlen nicht auflösbar ist, J. Reine Angew. Math. 113 (1894), 335–347.
Bibliographic Information
- Anastasios Simalarides
- Affiliation: T.E.I. of Chalcis, Psahna 34400, Euboea, Greece
- Received by editor(s): April 13, 1999
- Received by editor(s) in revised form: February 24, 2000
- Published electronically: October 18, 2000
- © Copyright 2000 American Mathematical Society
- Journal: Math. Comp. 71 (2002), 415-427
- MSC (2000): Primary 11C20; Secondary 11Y40, 11D79
- DOI: https://doi.org/10.1090/S0025-5718-00-01292-8
- MathSciNet review: 1863011