UPPER BOUNDS FOR THE PRIME DIVISORS OF WENDT’S DETERMINANT

ANASTASIOS SIMALARIDES

Abstract. Let \(c \geq 2 \) be an even integer, \((3, c) = 1 \). The resultant \(W_c \) of the polynomials \(t^c - 1 \) and \((1 + t)^c - 1 \) is known as Wendt’s determinant of order \(c \). We prove that among the prime divisors \(q \) of \(W_c \) only those which divide \(2^c - 1 \) or \(L_{c/2} \) can be larger than \(2^{c/4} \), where \(\theta = 2.248738 \) and \(L_n \) is the \(n \)th Lucas number, except when \(c = 20 \) and \(q = 61 \). Using this estimate we derive criteria for the nonsolvability of Fermat’s congruence.

1. Introduction

Let \(c \geq 2 \) be an even integer. Given two polynomials \(f(t) \) and \(g(t) \) denote by \(R(f(t), g(t)) \) their resultant. The integer

\[
W_c = R(t^c - 1, (1 + t)^c - 1)
\]

is known as Wendt’s determinant. The prime divisors of \(W_c \) are of importance because of the following result of Wendt [10].

Theorem 1. Let \(p, q \) be odd primes such that \(q = 1 + cp \), \((3, c) = 1 \). Then, Fermat’s congruence

\[
x^p + y^p + z^p \equiv 0 \pmod{q}
\]

has a nontrivial solution (that is, a solution \((x, y, z)\) such that \(xyz \neq 0 \pmod{q}\)) if and only if \(q \) divides \(W_c \).

Although Fermat’s Problem has been solved completely, some questions concerning congruence [11] (or, equivalently, the number \(W_c \)) remain still unanswered (cf. Section 5).

Since \(W_c = 0 \) if and only if \((3, c) > 1 \), we shall assume through the paper that \((3, c) = 1 \). The quantity \(|W_c|\) grows rapidly with \(c \); Boyd [4] proved that

\[
10^{-1/3} \lambda^2 < |W_c| < 10^{1/3} \lambda^2,
\]

where \(\log \lambda = \frac{2}{3} \int_0^{\pi/3} \log(2 \cos \theta) d\theta = 0.323 \ldots \). In the Table 1 below we list the first few values of \(|W_c|\). Several authors carried out the complete factorization of \(W_c \) for \(c \leq c_0 \): Frame [8] for \(c_0 = 50 \); Fee and Granville [6] for \(c_0 = 200 \); Ford and Jha [7] for \(c_0 = 500 \).

Received by the editor April 13, 1999 and, in revised form, February 24, 2000.

2000 Mathematics Subject Classification. Primary 11C20; Secondary 11Y40, 11D79.

Key words and phrases. Wendt’s determinant, Fermat’s congruence.
Table 1. The values of $|W_c|$ for $c \leq 20$

| c | $|W_c|$ |
|-----|------|
| 2 | 3 |
| 4 | $3 \cdot 5^3$ |
| 8 | $3^3 \cdot 5^3 \cdot 17^3$ |
| 10 | $3 \cdot 11^9 \cdot 31^3$ |

By the well-known factorizations (cf. [8])

$$W_c = \prod_{a=1}^{c-1} \prod_{b=1}^{c-1} (1 + \zeta^a + \zeta^b)$$

(2)

of W_c, it follows immediately that the integer $2^c - 1$ divides W_c. It follows also in an analogous way (cf. Section 2) that $L_{c/2}$ divides W_c (L_n is the nth Lucas number), in case $c \equiv 2 \pmod{4}$.

Such nice factors of W_c are called principal factors. Further information on the principal factors of W_c can be found in E. Lehmer [11], Frame [8] and Ribenboim [12]; for a recent result see Helou [9]. The factorization of the principal factors

$$2^c - 1, \; L_{c/2},$$

is of special importance, because the greatest prime divisor of W_c divides often one of the numbers (3). The extensive tables by Brillhart et al. [2], contain all the known factorizations of the numbers $2^c - 1$ for $c \leq 2400$; other tables by Brillhart et al. [3] contain all the known factorizations of the Lucas numbers L_n for $n \leq 500$. Unfortunately, no complete factorization of W_c is known that involves only simple principal factors.

Upper bounds for the prime divisors of W_c are obtained in the following way. Let q be a prime divisor of W_c, which does not divide c. It follows by (2) that a prime ideal divisor of q in $\mathbb{Q}(\zeta)$ divides a trinomial cyclotomic integer $1 + \zeta^a + \zeta^b$. In consequence, q divides both the norm

$$N = N(a, b) = N_{\mathbb{Q}(\zeta)/\mathbb{Q}}(1 + \zeta^a + \zeta^b)$$

of $1 + \zeta^a + \zeta^b$ and the resultant

$$R = R(a, b) = R(1 + t^a + t^b, t^{c/2} + 1)$$

of the polynomials $1 + t^a + t^b$ and $t^{c/2} + 1$; in consequence, it suffices to estimate one of the numbers $|N|$ and $|R|$. Bounds which arise from the estimation of $|N|$ have their origin in Vandiver [15], who first noticed and used the simplest possible estimate $|N| \leq 3^{\phi(c)}$ of this type (ϕ is Euler’s function). Improved bounds of this type were proved and used by Denes [5], Simalarides [13], and, Fee and Granville [6]. Bounds that arise from the estimation of $|R|$ have their origin in Krasner [10], who proved that $q \leq 3^{c/4}$ for every prime divisor q of W_c such that $2^c \not\equiv 1 \pmod{q}$ and $q = 1 + cp$, where p is a prime. The author [14] improved upon Krasner’s result by proving that $q \leq 3 + (2.618\ldots)^{c/4}$, under the same conditions. In the same paper, it was also proved that $q \leq 2.459^{c/4}$ under the additional condition...
that q does not divide the numbers $1 + (-1)^{c/2} \pm L_{c/2}$. The results in [10] and [14] were not formulated explicitly as results concerning the resultant W_c, but rather, as results concerning the first case of Fermat’s Last Theorem.

We generalize and improve all these previous results as follows.

Theorem 2. Let $c \geq 2$ be an even integer such that $(3, c) = 1$. If a prime divisor q of W_c satisfies the inequality

$$ q > \theta^{c/4}, \quad \text{where} \quad \theta = 2.2487338, $$

then at least one of the following is true: (i) $c = 20$ and $q = 61$; (ii) q is a divisor of $2^c - 1$; (iii) $c \equiv 2 \pmod{4}$ and q is a divisor of $L_{c/2}$.

The proof of Theorem 2 will be given in Section 3.

In case $c \equiv 0 \pmod{4}$ the number $2^c - 1$ admits the obvious factorization

$$ 2^c - 1 = (2^{c/4} - 1)(2^{c/4} + 1)(2^{c/2} + 1), $$

while in case $c \not\equiv 0 \pmod{8}$, it can be factored further (Aurifeuillian factorization) as follows:

$$ 2^c - 1 = (2^{c/4} - 1)(2^{c/4} + 1)(2^{c/4} - 2^{(c+4)/8} + 1)(2^{c/4} + 2^{(c+4)/8} + 1). $$

In view of these factorizations, Theorem 2 can be written in the following sharper form.

Theorem 3. Let $c \geq 2$ be an even integer such that $(3, c) = 1$. Then, among the prime divisors q of W_c, only those which divide either

$$ 2^c - 1 \quad \text{or} \quad L_{c/2}, \quad \text{in case} \quad c \equiv 2 \pmod{4}, $$

or

$$ 2^{c/2} + 1, \quad \text{in case} \quad c \equiv 0 \pmod{8}, $$

can be larger than $\theta^{c/4}$, where $\theta = 2.2487338$, except when

$$(c, q) \in \{(4, 3), (4, 5), (20, 61)\}.$$

2. Preliminaries concerning Fibonacci and Lucas numbers

The formulae

$$ L_{2n} = L_n^2 - 2(-1)^n, \quad 4 + L_{2n-1}^2 = 5F_{2n-1}^2, \quad n \geq 1, $$

are immediate consequences of the standard expressions

$$ L_n = \omega_1^n + \omega_2^n, \quad F_n = \frac{\omega_2^n - \omega_1^n}{\omega_2 - \omega_1}, \quad n \geq 1 $$

for the nth Lucas and Fibonacci numbers, respectively, where $\omega_1 = (1 - \sqrt{5})/2$, $\omega_2 = (1 + \sqrt{5})/2$, are the roots of the polynomial $t^2 - t - 1$. Define

$$ u_c = R(t^2 + t - 1, \ t^c - 1). $$

The following lemma shows that u_c is a principal factor of W_c.

Lemma 1. Let $c \geq 2$ be an even integer such that $(3,c) = 1$. Then the following hold true:

(i) The integer u_c is a divisor of W_c.

(ii) We have

$$u_c = 2 - L_c = 2 + 2(-1)^{c/2} - L_{c/2}^2$$

$$= \begin{cases} (2 - L_1) (2 + L_1) L_{c/2}^2 & \text{if } c \equiv 0 \pmod{8}, \\ -5F_c^2 L_{c/2}^2 & \text{if } c \equiv 4 \pmod{8}, \\ -L_2^2 & \text{if } c \equiv \pm 2 \pmod{8}. \end{cases}$$

(iii) If a prime divisor $q \neq 5$ of u_c is larger than $\theta^{c/4}$, then $c \equiv 2 \pmod{4}$ and q is a divisor of $L_{c/2}$.

Proof. (i) Immediate in view of (2) and the fact that

$$u_c = \prod_{a=1}^{c} (\zeta^{2a} + \zeta^a - 1).$$

(ii) We have

$$u_c = (\omega_1^c - 1)(\omega_2^c - 1) = (\omega_1 \omega_2)^c - (\omega_1^c + \omega_2^c) + 1 = 2 - L_c.$$

Applying formulæ (3) we obtain the rest of the result sought.

(iii) Immediate in view of (ii) and of the obvious bounds

$$L_n \leq 1 + \omega_2^n = 1 + (1.618 \ldots)^n, \quad F_n \leq \frac{\omega_2^n + 1}{\sqrt{5}} = \frac{(1.618 \ldots)^n + 1}{\sqrt{5}},$$

where $n \geq 1$.

3. Proof of Theorem 2

First of all, Theorem 2 is true for $c \leq 20$, so we can assume that $c \geq 22$. Assume that there is a prime divisor q of W_c which satisfies the inequality (4). Assume also that q is neither a divisor of $2^c - 1$, nor a divisor of $L_{c/2}$ in case $c \equiv 2 \pmod{4}$. We shall prove that this assumption leads to a contradiction. Hypothesis (4) implies that $q > c$, so q does not divide c; it follows that

$$1 + \zeta^a + \zeta^b \equiv 0 \pmod{q},$$

where q is a prime ideal divisor of q in $\mathbb{Q}(\zeta)$, and a, b are two integers such that

$$a \neq 0, \quad b \neq 0, \quad a \neq b \pmod{c}$$

(the last three relations are immediate consequences of the hypothesis $2^c \neq 1 \pmod{q}$).

Since $\zeta^{c/2} + 1 = 0$, the resultant $R(a, b)$ of the polynomials $1 + t^a + t^b$, $t^{c/2} + 1$ satisfies the congruence

$$R(a, b) \equiv 0 \pmod{q}.$$

We can assume that $q \equiv 1 \pmod{c}$; otherwise would have $R(a, b) \equiv 0 \pmod{q^2}$, and in consequence $q < 3^{c/8}$, which would contradict hypothesis (4).
The integer $R(a, b)$ admits the following representation:

$$R(a, b) = \prod_{i=1}^{c/2} \left[1 + \zeta^{(2i-1)a} + \zeta^{(2i-1)b} \right]$$

$$= \prod_{i=1}^{c_1/2} \left[3 + 2 \cos \frac{2\pi a}{c} (2i - 1) + 2 \cos \frac{2\pi b}{c} (2i - 1) + 2 \cos \frac{2\pi (a - b)}{c} (2i - 1) \right] d,$$

where

$$c_1 = \begin{cases} \frac{c}{4} & \text{if } c \equiv 0 \pmod{4}, \\ \frac{c}{4} - \frac{1}{2} & \text{if } c \not\equiv 0 \pmod{4}, \end{cases}$$

and

$$d = \begin{cases} 1 & \text{if } c \equiv 0 \pmod{4}, \\ 1 + (-1)^a + (-1)^b & \text{if } c \not\equiv 0 \pmod{4}. \end{cases}$$

We have $R(a, b) \neq 0$ because of the relation $(3, c) = 1$. Introducing the abbreviation

$$A_i = \cos \frac{2\pi a}{c} (2i - 1) + \cos \frac{2\pi b}{c} (2i - 1) + \cos \frac{2\pi (a - b)}{c} (2i - 1),$$

we obtain

$$\log |R(a, b)| = \sum_{i=1}^{c_1} \log (3 + 2A_i) + \log |d|,$$

where evidently $-1.5 < A_0 \leq 3$. We have

$$\log (3 + 2z) < \sum_{j=0}^{4} \alpha_j z^j, \quad \text{for } -1.5 < z \leq 3,$$

where $\alpha_0 = 1.166985006, \alpha_1 = 0.76146, \alpha_2 = -0.295509605, \alpha_3 = 0.0523446, \alpha_4 = 0.001453$. This implies that

$$\log |R(a, b)| < \sum_{i=1}^{c_1} \sum_{j=0}^{4} \alpha_j A_i^j + \log |d| = \sum_{j=0}^{4} \alpha_j \sum_{i=1}^{c_1} A_i^j + \log |d|. \quad (8)$$

Given two variables x, y, consider the function

$$[\cos x + \cos y + \cos (x - y)]^n, \quad n \geq 0,$$

and its Fourier expansion

$$[\cos x + \cos y + \cos (x - y)]^n = \sum_{r=0}^{\infty} \sum_{s=-\infty}^{\infty} c_{r,s}^{(n)} \cos (rx + sy);$$

the set

$$A_n = \left\{ (r, s) \in \mathbb{Z} \times \mathbb{Z}; c_{r,s}^{(n)} \neq 0 \right\}$$

is finite. We have trivially $A_0 = \{(0, 0)\}$ and $c_{0,0}^{(0)} = 1$. It is easily seen that

$$A_n \subset A_{n+1}, \quad \text{for } n = 1, 2, 3, \ldots.$$
Proof. The first assertion of the lemma is obvious.

We have
\[(\cos x + \cos y + \cos (x - y))^n = \sum_{(r,s) \in \mathcal{A}_n} c_{r,s}^{(n)} \cos (rx + sy), \]
or more simply
\[(\cos x + \cos y + \cos (x - y))^n = \sum_{r,s} c_{r,s}^{(n)} \cos (rx + sy). \]

Estimate (8) then takes the form
\[\log |R(a,b)| < \sum_{j=0}^{4} \alpha_j \sum_{r,s} \sum_{i=1}^{c_1} \cos \left(\frac{2\pi (ra + sb)}{c} (2i - 1) \right) + \log |d|. \]

We also have
\[\sum_{i=1}^{c_1} \cos \left(\frac{2\pi (ra + sb)}{c} (2i - 1) \right) = \begin{cases} c_1 (-1)^{(2(ra+sb)/c)} & \text{if } ra + sb \equiv 0 \pmod{\frac{c}{2}}; \\ 0 & \text{if } ra + sb \not\equiv 0 \pmod{\frac{c}{2}} \text{ and } c \equiv 0 \pmod{4}; \\ -\frac{1}{2} \cos (ra + sb)\pi & \text{if } ra + sb \not\equiv 0 \pmod{\frac{c}{2}} \text{ and } c \not\equiv 0 \pmod{4}. \end{cases} \]

The next lemma guarantees that \(ra + sb \not\equiv 0 \pmod{\frac{c}{2}} \) for all \((r,s) \in \mathcal{A}_4 \) with at most two exceptions. We denote by \((a, b)\) any solution of the congruence
\[1 + \zeta^A + \zeta^B \equiv 0 \pmod{q}, \quad A \not\equiv 0, \quad B \not\equiv 0, \quad A \not\equiv B \pmod{c}; \]
the numbers \(a, b \) are determined mod\(c \). Relation (9) says that the set of the solutions to (10) is nonempty by hypothesis.

Lemma 2. Let \(\mathcal{A} = \{(2, -4), (4, -2), (2, 2)\} \). Then the following hold true:
(I) The pairs \((b, a), (-a, b - a)\) are also solutions of (10).
(II) The congruence
\[ra + sb \equiv 0 \pmod{\frac{c}{2}} \]
is impossible for \((r, s) \in \mathcal{A}_4 \setminus \mathcal{A} - \{(0, 0)\}\).
(III) If \(c \not\equiv 0 \pmod{4} \), then congruence (12) is impossible for \((r, s) \in \mathcal{A}_4 \setminus \{(0, 0)\}\), while if \(c \equiv 0 \pmod{4} \), then congruence (12) can be satisfied by at most one \((r, s) \in \mathcal{A}\) and in this case \(2(ra + sb)/c\) is odd.

Proof. The first assertion of the lemma is obvious.

(II) We have \(\mathcal{A}_1 = \{(1, -1), (1, 0), (0, 1)\} \) and
\[
\begin{align*}
\mathcal{A}_2 & = \mathcal{A}_1 \cup \{(0, 0), (1, -2), (2, -2), (2, -1), (2, 0), (1, 1), (0, 2)\}, \\
\mathcal{A}_3 & = \mathcal{A}_2 \cup \{(1, -3), (2, -3), (3, -3), (3, -2), (3, -1), (3, 0), (2, 1), (1, 2), (0, 3)\}, \\
\mathcal{A}_4 & = \mathcal{A}_3 \cup \{(1, -4), (2, -4), (3, -4), (4, -4), (4, -3), (4, -2), (4, -1), (4, 0), (3, 1), (2, 2), (1, 3), (0, 4)\}.
\end{align*}
\]

Obviously, the set \(\mathcal{A}_4 \setminus \mathcal{A} - \{(0, 0)\} \) consists of 27 elements.

Consider the transformations \(\tau_0, \tau_1, \tau_2 \) defined by
\[
\tau_0(a, b) = (a, b), \quad \tau_1(a, b) = (b, a), \quad \tau_2(a, b) = (-a, b - a).
\]
All these transformations are of the form
\[(a, b) \mapsto (a + a_{12}b, a_{21}a + a_{22}b), \quad i = 0, 1, 2,
\]

or in matrix notation
\[
\tau_i(a, b)^T = \begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}
\begin{pmatrix}
a \\
b
\end{pmatrix}, \quad a_{kl} \in \mathbb{Z}.
\]

The image \(\tau_i(a, b)\) is also a solution of \((11)\) for \(i = 0, 1, 2\) because of the part (I) of the lemma. For this reason, if
\[(14) \quad r_1a + s_1a \not\equiv 0 \pmod{\frac{c}{2}},
\]

for some \((r_1, s_1) \in A_4 - A - \{(0, 0)\}\) and for every solution \((a, b)\) of \((11)\), then also
\[(15) \quad r_1 \left(a_{11}^{(i)}a + a_{12}^{(i)}b\right) + s_1 \left(a_{21}^{(i)}a + a_{22}^{(i)}b\right) \not\equiv 0 \pmod{\frac{c}{2}}
\]

for every \(i = 0, 1, 2, 3\). Since the left member of \((15)\) is equal to
\[
\left(r_1a_{11} + s_1a_{21}\right)a + \left(r_1a_{12} + s_1a_{22}\right)b,
\]

it follows that if \((14)\) is true for some \((r_1, s_1) \in A_4 - A - \{(0, 0)\}\) and for every solution \((a, b)\), then the relation \(ra + sb \not\equiv 0 \pmod{\frac{c}{2}}\) is also true for the pair \((r, s)\), where
\[(16) \quad \begin{pmatrix} r \\ s \end{pmatrix} = \begin{pmatrix} a_{11}^{(i)} & a_{12}^{(i)} \\ a_{21}^{(i)} & a_{22}^{(i)} \end{pmatrix}
\begin{pmatrix} \tau_1 \\ s_1 \end{pmatrix}, \quad i = 0, 1, 2.
\]

A subset \(B\) of \(A_4 - A - \{(0, 0)\}\) is called fundamental, if, for every pair \((r, s) \in A_4 - A - \{(0, 0)\}\), the equality
\[
\begin{pmatrix} r \\ s \end{pmatrix} = \pm T \begin{pmatrix} r_1 \\ s_1 \end{pmatrix}
\]

holds true for some \((r_1, s_1) \in B\) and for some transformation \(T\) composed of the transformations \((10)\).

The final conclusion of the above discussion is the following: To prove part (II) of Lemma 2, it suffices to prove that the congruence \((12)\) is impossible for all \((r, s) \in B\), where \(B\) is a fundamental subset of \(A_4 - A - \{(0, 0)\}\). A simple calculation shows that a fundamental subset of \(A_4 - A - \{(0, 0)\}\) is the following
\[
B = \{(1, 0), (2, 0), (3, 0), (4, 0), (1, 1), (1, -3), (1, -4)\}.
\]

We distinguish two cases (A), (B).

(A) \((r, s) \in \{(1, 0), (2, 0), (3, 0), (4, 0)\}\); we have to prove that
\[
a \not\equiv 0, 2a \not\equiv 0, 2^2a \not\equiv 0, \frac{c}{2}a \not\equiv 0 \pmod{\frac{c}{2}}.
\]

We prove the first three relations by induction on the exponents of the powers \(1, 2, 2^2\). The first relation is true by hypothesis. Assuming that \(2^ja \not\equiv 0 \pmod{\frac{c}{2}}\), let us prove that \(2^{j+1}a \not\equiv 0 \pmod{\frac{c}{2}}\). Indeed, the contrary hypothesis \(2^{j+1}a \equiv 0 \pmod{\frac{c}{2}}\) implies that \(2^{j+1}a = k\frac{c}{2}\), where \(k\) is an integer. The number \(k\) is odd, because if \(k\) were even, then this fact would vitiate the induction hypothesis;
implies that at least one of the congruences
primitive 2
\(u\) of Lemma 1 the number
Relation (21) contradicts hypothesis (4). Each of the numbers (22) divides by part
consequence, 4 and so \(a = k(c/2^j+2).\) Then \(\zeta^a = \xi,\) where \(\xi\) is a
Congruence (17) implies then \((1 + \xi)^c \equiv 1 \pmod q\) and taking norms we conclude
It remains to prove that \(3a \not\equiv 0 \pmod {c/2}\); indeed, if were \(3a \equiv 0 \pmod {c/2}\)
holds true for every \(n\) and \(\xi\) has a common root mod
It follows that at least one of the polynomials
We have to distinguish between two cases (a) and (b):
We have
It remains to prove that \(3a \not\equiv 0 \pmod {c/2}\); indeed, if were \(3a \equiv 0 \pmod {c/2}\) this
has a common root mod \(q\) with the polynomial \(t^c - 1 = (t^{c/2} - 1)(t^{c/2} + 1).\) This
holds true for every \(n \in \{1, 2\}.\) If \(d_{r,s}^\pm\) are the degrees of the polynomials (19) and
\(R\left(f_{r,s}^\pm(t), t^{c/2} + (-1)^n\right) \equiv 0 \pmod q\) holds true for every \(n \in \{1, 2\}.\) If \(d_{r,s}^\pm\) are the degrees of the polynomials (19) and
\(R\left(f_{r,s}^\pm(t), t^{c/2} + (-1)^n\right) = \prod_{i=1}^{d_{r,s}^\pm} \rho_i^{c/2} + (-1)^n.\)
We have to distinguish between two cases (a) and (b):
(a) \((r, s) = (1, 1);\) we have
Relation (21) contradicts hypothesis (4). Each of the numbers (22) divides by part (ii) of Lemma 1 the number \(u_n\) for \(n = 1, 2.\) Congruence (20) leads then, in view of part (iii) of Lemma 1, to a contradiction.
(b) \((r, s) \in \{(1, -3), (1, -4)\};\) we have
For \(c \geq 22,\) a simple calculation shows that
for \((r, s) \in \{(1, -3), (1, -4)\},\) which contradicts, in view of (24), hypothesis (4).
(III) If two of the congruences

\[2a - 4b \equiv 0, \quad 4a - 2b \equiv 0, \quad 2a + 2b \equiv 0 \pmod{\frac{c}{2}}, \]

were true, then for these two congruences, say for the first and for the second, we would have

\[0 \equiv (2a - 4b) + (4a - 2b) \equiv 6a - 6b \pmod{\frac{c}{2}} \Rightarrow 6a - 6b = k\frac{c}{2} \]

\[\Rightarrow 2a - 2b = k_1\frac{c}{2} \quad \text{(because } c \not\equiv 0 \pmod{3} \text{)} \]

\[\Rightarrow 2a - 2b \equiv 0 \pmod{\frac{c}{2}}, \]

which is absurd, since \((2, -2) \in \mathcal{A}_4 - \mathcal{A} - \{(0, 0)\}. If one of the congruences \((23)\) is true, this means that

\[2a - 4b \equiv 0 \quad \text{or} \quad 4a - 2b \equiv 0 \quad \text{or} \quad 2a + 2b \equiv 0 \pmod{\frac{c}{2}}, \]

or equivalently

\[2a - 4b = k_1\frac{c}{2} \quad \text{or} \quad 4a - 2b = k_2\frac{c}{2} \quad \text{or} \quad 2a + 2b = k_3\frac{c}{2}. \]

The integers \(k_1, k_2, k_3\) cannot be even; otherwise this would imply that

\[2a - 4b \equiv 0 \quad \text{or} \quad 4a - 2b \equiv 0 \quad \text{or} \quad 2a + 2b \equiv 0 \pmod{\frac{c}{2}}, \]

which is absurd, because \((1, -2), (2, -1), (1, 1) \in \mathcal{A}_4 - \mathcal{A} - \{(0, 0)\}. In case \(c \not\equiv 0 \pmod{4}\) the equalities \((24)\) are all impossible because the right members are odd numbers.

We then turn to the proof of theorem. We distinguish two cases (A) and (B).

(A) \(c \equiv 0 \pmod{4}\); then \(c_1 = \frac{c}{4}\) and \(d = 1\). In case the congruence \(ra + sb \equiv 0 \pmod{\frac{c}{2}}\) holds true for one (and only one) \((r, s) \in \mathcal{A}\), it follows by Lemma 2 and relations \((9), (10)\) that

\[\log |R(a, b)| < \left[\alpha_0 c_{0,0}^{(0)} + \alpha_1 c_{1,0}^{(1)} + \alpha_2 c_{0,0}^{(2)} + \alpha_3 c_{0,0}^{(3)} + \alpha_4 (c_{0,0}^{(4)} - c_{r,s}^{(4)}) \right] \frac{c}{4}. \]

Since

\[c_{0,0}^{(0)} = 1, \quad c_{0,0}^{(1)} = 0, \quad c_{0,0}^{(2)} = \frac{3}{2}, \quad c_{0,0}^{(3)} = \frac{3}{2}, \quad c_{0,0}^{(4)} = \frac{45}{8}, \]

and

\[c_{r,s}^{(4)} = \frac{3}{4} \quad \text{for} \quad (r, s) \in \mathcal{A}, \]

we obtain the estimate

\[\log |R(a, b)| < (0.809283336 \ldots) \frac{c}{4} < \frac{c}{4} \log \theta. \]

In case the congruence \(ra + sb \equiv 0 \pmod{\frac{c}{2}}\) is impossible for all \((r, s) \in \mathcal{A}\), Lemma 2, together with the relations \((9), (10)\), imply the estimate

\[\log |R(a, b)| < \left[\sum_{j=0}^{4} \alpha_j c_{0,0}^{(j)} \right] \frac{c}{4} = \frac{c}{4} \log \theta. \]

Both estimates \((25)\) and \((26)\) contradict, by \((7)\), hypothesis \((4)\).
(B) $c \neq 0 \pmod{4}$; then $c_1 = \frac{c}{4} - \frac{1}{2}$, $d = 1 + (-1)^a + (-1)^b$, and it follows by Lemma 2 and relations (9), (10) that

\[
\log |R(a, b)| < \sum_{j=0}^{4} \alpha_j \left[\frac{c_1^{(j)}}{4} e_{0,0}^{(j)} - \frac{1}{2} \sum_{r,s \neq (0,0)} c_{r,s}^{(j)} \cos (ra + sb)\pi \right] + \log |d|
\]

\[
= \sum_{j=0}^{4} \alpha_j \left[\frac{c_1^{(j)}}{4} e_{0,0}^{(j)} - \frac{1}{2} \sum_{r,s} c_{r,s}^{(j)} \cos (ra + sb)\pi \right] + \log |d|
\]

\[
= \sum_{j=0}^{4} \alpha_j c_{j}^{(j)} \left[\frac{c}{4} - \frac{1}{2} \sum_{j=0}^{4} \alpha_j \left[(-1)^a + (-1)^b + (-1)^{a-b} \right] \right] + \log |d|.
\]

Hence

\[
\log |R(a, b)| < \begin{cases}
\frac{c}{4} \log \theta + \log |d| - 0.01889 & \text{if } a, b \text{ are both even}, \\
\frac{c}{4} \log \theta - 0.4103 & \text{otherwise},
\end{cases}
\]

which by (2) contradicts hypothesis (H), since q cannot divide the integer d.

4. THE LARGE PRIME DIVISORS OF W_c

Let $c \geq 2$ be an integer such that $(3, c) = 1$. A prime divisor q of W_c is called large if $q > 2^{c/4}$. Denote by P_c the set of large prime divisors of W_c; denote also by P, Q, U (or, for simplicity, by P, Q, U) the largest prime divisor of the numbers $2^{c/2} - 1$, $2^{c/2} + 1$, $L_c/2$, respectively. The set P_c is empty in case $c \equiv 4 \pmod{8}$, except when $c = 20$. We can easily determine the set P_c using Theorem 3 in combination with the tables in [2] and [3]. Thus, in Table 2 below we list the large prime divisors of W_c for all $c \leq 662$, such that $c \not\equiv 0 \pmod{3}$ and $c \not\equiv 4 \pmod{8}$ (the case $c = 20$ is also included). We did not try to extend Table 2 beyond the value $c = 662$, because for $c > 662$, in the tables in [2] and [3] appear incomplete factorizations of the numbers (3), involving composite factors whose prime factors are unknown. We found that all the numbers in Table 2 are congruent to 1 (mod c). We also found that for $c \leq 662$, and $q \in P_c$, the number $(q-1)/c$ is always composite except when

\[
(c, q) \in \{(10, 31), (20, 61), (22, 683)\}.
\]

The verification of the last assertion has been carried out without much difficulty because in almost all cases, the numbers $(q-1)/c$ were found to have a small prime divisor. The only difficulties arose from the numbers $P_{482}, Q_{362}, Q_{454}$. Indeed we found that the least prime divisor of the numbers $(P_{482} - 1)/482$ and $(Q_{362} - 1)/362$ is 21221 and 412987, respectively, while the converse of Fermat's Theorem with base 2 showed that the number

\[
(Q_{454} - 1)/454 = 15 4145 7503 4860 2301 1302 1485 7398 0441 2137 3127
\]

is composite (with unknown factors).
Table 2. The large prime divisors of W_c for $c \leq 662$

<table>
<thead>
<tr>
<th>c</th>
<th>P_c</th>
<th>c</th>
<th>P_c</th>
<th>c</th>
<th>P_c</th>
<th>c</th>
<th>P_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Q</td>
<td>166</td>
<td>P</td>
<td>334</td>
<td>P</td>
<td>502</td>
<td>Q</td>
</tr>
<tr>
<td>8</td>
<td>P</td>
<td>302</td>
<td>Q</td>
<td>506</td>
<td>\varnothing</td>
<td>512</td>
<td>Q</td>
</tr>
<tr>
<td>10</td>
<td>P</td>
<td>174</td>
<td>Q</td>
<td>514</td>
<td>\varnothing</td>
<td>518</td>
<td>P</td>
</tr>
<tr>
<td>14</td>
<td>P</td>
<td>178</td>
<td>Q</td>
<td>520</td>
<td>\varnothing</td>
<td>526</td>
<td>Q</td>
</tr>
<tr>
<td>16</td>
<td>Q</td>
<td>182</td>
<td>\varnothing</td>
<td>530</td>
<td>\varnothing</td>
<td>536</td>
<td>Q</td>
</tr>
<tr>
<td>20</td>
<td>81</td>
<td>184</td>
<td>Q</td>
<td>538</td>
<td>P</td>
<td>542</td>
<td>Q</td>
</tr>
<tr>
<td>22</td>
<td>P</td>
<td>190</td>
<td>Q</td>
<td>544</td>
<td>\varnothing</td>
<td>550</td>
<td>Q</td>
</tr>
<tr>
<td>26</td>
<td>P</td>
<td>194</td>
<td>Q</td>
<td>554</td>
<td>\varnothing</td>
<td>560</td>
<td>Q</td>
</tr>
<tr>
<td>32</td>
<td>Q</td>
<td>200</td>
<td>\varnothing</td>
<td>566</td>
<td>P</td>
<td>574</td>
<td>Q</td>
</tr>
<tr>
<td>34</td>
<td>P</td>
<td>202</td>
<td>Q</td>
<td>584</td>
<td>Q</td>
<td>590</td>
<td>Q</td>
</tr>
<tr>
<td>38</td>
<td>P</td>
<td>206</td>
<td>P</td>
<td>598</td>
<td>Q</td>
<td>602</td>
<td>Q</td>
</tr>
<tr>
<td>40</td>
<td>Q</td>
<td>208</td>
<td>Q</td>
<td>608</td>
<td>\varnothing</td>
<td>610</td>
<td>Q</td>
</tr>
<tr>
<td>46</td>
<td>P</td>
<td>214</td>
<td>Q</td>
<td>616</td>
<td>Q</td>
<td>622</td>
<td>Q</td>
</tr>
<tr>
<td>50</td>
<td>\varnothing</td>
<td>216</td>
<td>P</td>
<td>626</td>
<td>Q</td>
<td>630</td>
<td>Q</td>
</tr>
<tr>
<td>56</td>
<td>Q</td>
<td>224</td>
<td>\varnothing</td>
<td>634</td>
<td>Q</td>
<td>640</td>
<td>Q</td>
</tr>
<tr>
<td>58</td>
<td>Q</td>
<td>226</td>
<td>P</td>
<td>646</td>
<td>Q</td>
<td>650</td>
<td>Q</td>
</tr>
<tr>
<td>62</td>
<td>P</td>
<td>230</td>
<td>Q</td>
<td>662</td>
<td>P</td>
<td>670</td>
<td>Q</td>
</tr>
<tr>
<td>64</td>
<td>Q</td>
<td>232</td>
<td>Q</td>
<td>672</td>
<td>P</td>
<td>680</td>
<td>Q</td>
</tr>
<tr>
<td>70</td>
<td>\varnothing</td>
<td>238</td>
<td>P</td>
<td>688</td>
<td>Q</td>
<td>698</td>
<td>Q</td>
</tr>
<tr>
<td>74</td>
<td>P</td>
<td>242</td>
<td>P</td>
<td>704</td>
<td>P</td>
<td>714</td>
<td>Q</td>
</tr>
<tr>
<td>80</td>
<td>Q</td>
<td>248</td>
<td>\varnothing</td>
<td>726</td>
<td>Q</td>
<td>738</td>
<td>Q</td>
</tr>
<tr>
<td>82</td>
<td>P</td>
<td>250</td>
<td>\varnothing</td>
<td>740</td>
<td>Q</td>
<td>750</td>
<td>Q</td>
</tr>
<tr>
<td>86</td>
<td>Q</td>
<td>254</td>
<td>P</td>
<td>762</td>
<td>Q</td>
<td>770</td>
<td>Q</td>
</tr>
<tr>
<td>88</td>
<td>Q</td>
<td>256</td>
<td>\varnothing</td>
<td>774</td>
<td>Q</td>
<td>788</td>
<td>Q</td>
</tr>
<tr>
<td>94</td>
<td>Q</td>
<td>256</td>
<td>\varnothing</td>
<td>788</td>
<td>Q</td>
<td>800</td>
<td>Q</td>
</tr>
<tr>
<td>98</td>
<td>P</td>
<td>266</td>
<td>P</td>
<td>808</td>
<td>Q</td>
<td>820</td>
<td>Q</td>
</tr>
<tr>
<td>104</td>
<td>\varnothing</td>
<td>272</td>
<td>\varnothing</td>
<td>822</td>
<td>Q</td>
<td>836</td>
<td>Q</td>
</tr>
<tr>
<td>106</td>
<td>Q</td>
<td>274</td>
<td>\varnothing</td>
<td>838</td>
<td>Q</td>
<td>852</td>
<td>Q</td>
</tr>
<tr>
<td>110</td>
<td>\varnothing</td>
<td>278</td>
<td>P</td>
<td>854</td>
<td>Q</td>
<td>868</td>
<td>Q</td>
</tr>
<tr>
<td>112</td>
<td>Q</td>
<td>280</td>
<td>\varnothing</td>
<td>872</td>
<td>Q</td>
<td>884</td>
<td>Q</td>
</tr>
<tr>
<td>118</td>
<td>P</td>
<td>286</td>
<td>\varnothing</td>
<td>888</td>
<td>Q</td>
<td>902</td>
<td>Q</td>
</tr>
<tr>
<td>122</td>
<td>P</td>
<td>290</td>
<td>Q</td>
<td>908</td>
<td>Q</td>
<td>922</td>
<td>Q</td>
</tr>
<tr>
<td>128</td>
<td>Q</td>
<td>296</td>
<td>Q</td>
<td>930</td>
<td>Q</td>
<td>944</td>
<td>Q</td>
</tr>
<tr>
<td>130</td>
<td>P</td>
<td>298</td>
<td>Q</td>
<td>940</td>
<td>Q</td>
<td>954</td>
<td>Q</td>
</tr>
<tr>
<td>134</td>
<td>P</td>
<td>302</td>
<td>Q</td>
<td>958</td>
<td>Q</td>
<td>970</td>
<td>Q</td>
</tr>
<tr>
<td>136</td>
<td>Q</td>
<td>304</td>
<td>\varnothing</td>
<td>972</td>
<td>Q</td>
<td>986</td>
<td>Q</td>
</tr>
<tr>
<td>142</td>
<td>Q</td>
<td>310</td>
<td>\varnothing</td>
<td>988</td>
<td>Q</td>
<td>1000</td>
<td>Q</td>
</tr>
<tr>
<td>146</td>
<td>P</td>
<td>314</td>
<td>\varnothing</td>
<td>1004</td>
<td>Q</td>
<td>1020</td>
<td>Q</td>
</tr>
<tr>
<td>152</td>
<td>Q</td>
<td>320</td>
<td>\varnothing</td>
<td>1024</td>
<td>Q</td>
<td>1038</td>
<td>Q</td>
</tr>
<tr>
<td>154</td>
<td>P</td>
<td>322</td>
<td>Q</td>
<td>1050</td>
<td>Q</td>
<td>1062</td>
<td>Q</td>
</tr>
<tr>
<td>158</td>
<td>Q</td>
<td>326</td>
<td>\varnothing</td>
<td>1064</td>
<td>Q</td>
<td>1080</td>
<td>Q</td>
</tr>
<tr>
<td>160</td>
<td>\varnothing</td>
<td>328</td>
<td>Q</td>
<td>1080</td>
<td>Q</td>
<td>1096</td>
<td>Q</td>
</tr>
</tbody>
</table>

5. Applications to Fermat’s congruence

Let p, q be odd primes. It is easy to prove that Fermat’s congruence (1) has a nontrivial solution if $q \not\equiv 1 \pmod{p}$ or $(3, c) > 1$. However, the case $q \equiv 1 \pmod{p}$,
(3, c) = 1 involves many difficult and still unsolved problems. Combining together Theorems 1 and 3 we obtain the following main result.

Theorem 4. Let p, q be odd primes such that $(p, q) \neq (3, 61)$. Then Fermat’s congruence

$$x^p + y^p + z^p \equiv 0 \pmod{q}$$

has only trivial solutions (that is, solutions (x, y, z) such that $xyz \equiv 0 \pmod{q}$) provided that:

(i) $q = 1 + cp$ and $(3, c) = 1$;
(ii) $2^c \not\equiv 1 \pmod{q}$, or $c \equiv 0 \pmod{4}$;
(iii) $Lc/2 \not\equiv 0 \pmod{q}$, or $c \equiv 0 \pmod{4}$;
(iv) $q > \theta^{c/4}$.

The stronger condition $c \equiv 0 \pmod{4}$ in (ii) instead of $c \equiv 0 \pmod{8}$, is due to the fact that the number $2^c + 1$ does not have prime divisors of the form $q \equiv 1 \pmod{8}$; this has been proved in [13, p. 170]. Theorem 4 improves upon the previous results of Vandiver [15], Krasner [10] and the author [14].

The numerical evidence indicates that the conditions

$$2^c \not\equiv 1 \pmod{q} \quad \text{and} \quad L_c/2 \not\equiv 0 \pmod{q}$$

are almost always superfluous; more precisely:

Proposition 1. Let p, q be odd primes. Then, congruence (27) has only trivial solutions for every prime exponent

$$p \leq \frac{\theta^{166} - 1}{664} = (3.9769287 \ldots)10^{55},$$

provided that $q = 1 + cp$, $(3, c) = 1$, $q > \theta^{c/4}$ and that

$$(p, q) \neq (3, 31), (3, 61), (31, 683).$$

Proof. Assume that the pair (p, q) contradicts the truth of the proposition. Then, necessarily, $q \in \mathcal{P}_c$. By the results in Section 4 (last paragraph) it follows that $c \geq 664$. In consequence

$$p > \frac{\theta^{c/4} - 1}{c} \geq \frac{\theta^{166} - 1}{664},$$

which is impossible by hypothesis.

Proposition 1 leads naturally to the following conjecture.

Conjecture 1. Let p, q be odd primes. Then, congruence (27) has only trivial solutions provided that $q = 1 + cp$, $(3, c) = 1$, $q > \theta^{c/4}$ and that $(p, q) \neq (3, 31), (3, 61), (31, 683)$.

It is important to note that inequality $q > \theta^{c/4}$ is equivalent to

$$q < \frac{4}{\log \theta} p \log p + \frac{4}{\log \theta} p \log g \log p = (4.936 \ldots) p \log p + (4.936 \ldots) p \log \log p$$

(in fact, the last inequality is a bit weaker). According to a classical result of Dickson, congruence (27) has nontrivial solutions if

$$q > (p - 1)^2(p - 2)^2 + 6p - 2.$$
Chowla [4] conjectured that the stronger inequality \(q > \sqrt{p} \) holds true for sufficiently large \(p \).

ACKNOWLEDGMENT

I would like to express my thanks to the referee for valuable suggestions.

REFERENCES

