Quincunx fundamental refinable functions and quincunx biorthogonal wavelets
HTML articles powered by AMS MathViewer
- by Bin Han and Rong-Qing Jia;
- Math. Comp. 71 (2002), 165-196
- DOI: https://doi.org/10.1090/S0025-5718-00-01300-4
- Published electronically: October 17, 2000
- PDF | Request permission
Abstract:
We analyze the approximation and smoothness properties of quincunx fundamental refinable functions. In particular, we provide a general way for the construction of quincunx interpolatory refinement masks associated with the quincunx lattice in $\mathbb {R}^2$. Their corresponding quincunx fundamental refinable functions attain the optimal approximation order and smoothness order. In addition, these examples are minimally supported with symmetry. For two special families of such quincunx interpolatory masks, we prove that their symbols are nonnegative. Finally, a general way of constructing quincunx biorthogonal wavelets is presented. Several examples of quincunx interpolatory masks and quincunx biorthogonal wavelets are explicitly computed.References
- Alfred S. Cavaretta, Wolfgang Dahmen, and Charles A. Micchelli, Stationary subdivision, Mem. Amer. Math. Soc. 93 (1991), no. 453, vi+186. MR 1079033, DOI 10.1090/memo/0453
- D. R. Chen, B. Han, and S. D. Riemenschneider, Construction of multivariate biorthogonal wavelets with arbitrary vanishing moments, Adv. Comput. Math., 13 (2000), pp. 131–165.
- C. K. Chui, J. Stöckler, and J. D. Ward, Compactly supported box-spline wavelets, Approx. Theory Appl. 8 (1992), no. 3, 77–100. MR 1195176
- Albert Cohen and Ingrid Daubechies, Nonseparable bidimensional wavelet bases, Rev. Mat. Iberoamericana 9 (1993), no. 1, 51–137. MR 1216125, DOI 10.4171/RMI/133
- A. Cohen, Ingrid Daubechies, and J.-C. Feauveau, Biorthogonal bases of compactly supported wavelets, Comm. Pure Appl. Math. 45 (1992), no. 5, 485–560. MR 1162365, DOI 10.1002/cpa.3160450502
- Ingrid Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. MR 1162107, DOI 10.1137/1.9781611970104
- Gilles Deslauriers and Serge Dubuc, Symmetric iterative interpolation processes, Constr. Approx. 5 (1989), no. 1, 49–68. Fractal approximation. MR 982724, DOI 10.1007/BF01889598
- Gilles Deslauriers, Jacques Dubois, and Serge Dubuc, Multidimensional iterative interpolation, Canad. J. Math. 43 (1991), no. 2, 297–312. MR 1113755, DOI 10.4153/CJM-1991-016-4
- N. Dyn and D. Levin, Interpolating subdivision schemes for the generation of curves and surfaces, Multivariate approximation and interpolation (Duisburg, 1989) Internat. Ser. Numer. Math., vol. 94, Birkhäuser, Basel, 1990, pp. 91–106. MR 1111929, DOI 10.1007/978-3-0348-5685-0_{6}
- N. Dyn, J. A. Gregory, and D. Levin, A butterfly subdivision scheme for surface interpolation with tension control, ACM Trans. on Graphics, 9 (1990), 160–169.
- T. N. T. Goodman, Charles A. Micchelli, and J. D. Ward, Spectral radius formulas for subdivision operators, Recent advances in wavelet analysis, Wavelet Anal. Appl., vol. 3, Academic Press, Boston, MA, 1994, pp. 335–360. MR 1244611
- Bin Han, On dual wavelet tight frames, Appl. Comput. Harmon. Anal. 4 (1997), no. 4, 380–413. MR 1474096, DOI 10.1006/acha.1997.0217
- B. Han, Analysis and construction of optimal multivariate biorthogonal wavelets with compact support, SIAM J. Math. Anal., 31 (2000), 274–304.
- Bin Han and Rong-Qing Jia, Multivariate refinement equations and convergence of subdivision schemes, SIAM J. Math. Anal. 29 (1998), no. 5, 1177–1199. MR 1618691, DOI 10.1137/S0036141097294032
- Bin Han and Rong-Qing Jia, Optimal interpolatory subdivision schemes in multidimensional spaces, SIAM J. Numer. Anal. 36 (1999), no. 1, 105–124. MR 1654587, DOI 10.1137/S0036142997325611
- Hui Ji, Sherman D. Riemenschneider, and Zuowei Shen, Multivariate compactly supported fundamental refinable functions, duals, and biorthogonal wavelets, Stud. Appl. Math. 102 (1999), no. 2, 173–204. MR 1668532, DOI 10.1111/1467-9590.00108
- Rong-Qing Jia, Approximation properties of multivariate wavelets, Math. Comp. 67 (1998), no. 222, 647–665. MR 1451324, DOI 10.1090/S0025-5718-98-00925-9
- Rong-Qing Jia, Characterization of smoothness of multivariate refinable functions in Sobolev spaces, Trans. Amer. Math. Soc. 351 (1999), no. 10, 4089–4112. MR 1473444, DOI 10.1090/S0002-9947-99-02185-6
- Rong Qing Jia and Charles A. Micchelli, On linear independence for integer translates of a finite number of functions, Proc. Edinburgh Math. Soc. (2) 36 (1993), no. 1, 69–85. MR 1200188, DOI 10.1017/S0013091500005903
- R. Q. Jia and S. R. Zhang, Spectral properties of the transition operator associated to a multivariate refinement equation, Linear Algebra Appl., 292 (1999), 155–178.
- Jelena Kovačević and Martin Vetterli, Nonseparable multidimensional perfect reconstruction filter banks and wavelet bases for ${\scr R}^n$, IEEE Trans. Inform. Theory 38 (1992), no. 2, 533–555. MR 1162213, DOI 10.1109/18.119722
- Yves Meyer, Wavelets and operators, Cambridge Studies in Advanced Mathematics, vol. 37, Cambridge University Press, Cambridge, 1992. Translated from the 1990 French original by D. H. Salinger. MR 1228209
- Charles A. Micchelli, Interpolatory subdivision schemes and wavelets, J. Approx. Theory 86 (1996), no. 1, 41–71. MR 1397613, DOI 10.1006/jath.1996.0054
- Jean-Pierre Mongeau, Gilles Deslauriers, and Serge Dubuc, Continuous and differentiable multidimensional iterative interpolation, Linear Algebra Appl. 180 (1993), 95–120. MR 1206411, DOI 10.1016/0024-3795(93)90526-T
- Sherman D. Riemenschneider and Zuowei Shen, Multidimensional interpolatory subdivision schemes, SIAM J. Numer. Anal. 34 (1997), no. 6, 2357–2381. MR 1480385, DOI 10.1137/S0036142995294310
- Wim Sweldens, The lifting scheme: a custom-design construction of biorthogonal wavelets, Appl. Comput. Harmon. Anal. 3 (1996), no. 2, 186–200. MR 1385051, DOI 10.1006/acha.1996.0015
- Lars F. Villemoes, Continuity of nonseparable quincunx wavelets, Appl. Comput. Harmon. Anal. 1 (1994), no. 2, 180–187. MR 1310642, DOI 10.1006/acha.1994.1005
Bibliographic Information
- Bin Han
- Affiliation: Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544
- Address at time of publication: Department of Mathematical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1
- MR Author ID: 610426
- Email: bhan@math.princeton.edu, bhan@math.ualberta.ca
- Rong-Qing Jia
- Affiliation: Department of Mathematical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1
- Email: jia@xihu.math.ualberta.ca
- Received by editor(s): July 13, 1999
- Received by editor(s) in revised form: April 20, 2000
- Published electronically: October 17, 2000
- Additional Notes: The research of the first author was supported by a postdoctoral fellowship and Grant G121210654 from NSERC Canada.
The research of the second author was partially supported by NSERC Canada under Grant OGP 121336 - © Copyright 2000 American Mathematical Society
- Journal: Math. Comp. 71 (2002), 165-196
- MSC (2000): Primary 42C40, 41A25, 41A63, 65D05, 65D17
- DOI: https://doi.org/10.1090/S0025-5718-00-01300-4
- MathSciNet review: 1862994