Special prime numbers and discrete logs in finite prime fields
HTML articles powered by AMS MathViewer
- by Igor A. Semaev;
- Math. Comp. 71 (2002), 363-377
- DOI: https://doi.org/10.1090/S0025-5718-00-01308-9
- Published electronically: October 17, 2000
- PDF | Request permission
Abstract:
A set $A$ of primes $p$ involving numbers such as $ab^t+c$, where $|a|,|b|,|c|=O(1)$ and $t\to \infty$, is defined. An algorithm for computing discrete logs in the finite field of order $p$ with $p\in A$ is suggested. Its heuristic expected running time is $L_p[\frac 13;(\frac {32}{9})^{1/3}]$ for $(\frac {32}{9})^{1/3}=1.526\dotsb$, where $L_p[\alpha ;\beta ]=\exp ((\beta +o(1))\ln ^\alpha p(\ln \ln p)^{1-\alpha })$ as $p\to \infty$, $0<\alpha <1$, and $0<\beta$. At present, the most efficient algorithm for computing discrete logs in the finite field of order $p$ for general $p$ is Schirokauer’s adaptation of the Number Field Sieve. Its heuristic expected running time is $L_p[\frac 13;(\frac {64}{9})^{1/3}]$ for $(\frac {64}{9})^{1/3}=1.9229\dotsb$. Using $p\in A$ rather than general $p$ does not enhance the performance of Schirokauer’s algorithm. The definition of the set $A$ and the algorithm suggested in this paper are based on a more general congruence than that of the Number Field Sieve. The congruence is related to the resultant of integer polynomials. We also give a number of useful identities for resultants that allow us to specify this congruence for some $p$.References
- Whitfield Diffie and Martin E. Hellman, New directions in cryptography, IEEE Trans. Inform. Theory IT-22 (1976), no. 6, 644–654. MR 437208, DOI 10.1109/tit.1976.1055638
- Taher ElGamal, A public key cryptosystem and a signature scheme based on discrete logarithms, IEEE Trans. Inform. Theory 31 (1985), no. 4, 469–472. MR 798552, DOI 10.1109/TIT.1985.1057074
- Oliver Schirokauer, Discrete logarithms and local units, Philos. Trans. Roy. Soc. London Ser. A 345 (1993), no. 1676, 409–423. MR 1253502, DOI 10.1098/rsta.1993.0139
- Don Coppersmith, Andrew M. Odlzyko, and Richard Schroeppel, Discrete logarithms in $\textrm {GF}(p)$, Algorithmica 1 (1986), no. 1, 1–15. MR 833115, DOI 10.1007/BF01840433
- Daniel M. Gordon, Discrete logarithms in $\textrm {GF}(p)$ using the number field sieve, SIAM J. Discrete Math. 6 (1993), no. 1, 124–138. MR 1201995, DOI 10.1137/0406010
- Kevin S. McCurley, The discrete logarithm problem, Cryptology and computational number theory (Boulder, CO, 1989) Proc. Sympos. Appl. Math., vol. 42, Amer. Math. Soc., Providence, RI, 1990, pp. 49–74. MR 1095551, DOI 10.1090/psapm/042/1095551
- Damian Weber and Thomas Denny, The solution of McCurley’s discrete log challenge, Advances in cryptology—CRYPTO ’98 (Santa Barbara, CA, 1998) Lecture Notes in Comput. Sci., vol. 1462, Springer, Berlin, 1998, pp. 458–471. MR 1670968, DOI 10.1007/BFb0055747
- B. L. van der Waerden, Algebra. Teil I, Heidelberger Taschenbücher [Heidelberg Paperbacks], Band 12, Springer-Verlag, Berlin-New York, 1966 (German). Siebte Auflage. MR 263581
- I. A. Semaev, A generalization of the number field sieve, Probabilistic methods in discrete mathematics (Petrozavodsk, 1996) VSP, Utrecht, 1997, pp. 45–63. MR 1651131
- M. Elkenbracht-Huising, A multiple polynomial general number field sieve, Algorithmic Number Theory, Proceedings of ANTS-2, Lecture Notes in Computer Science, vol. 1122, Springer-Verlag, New York, 1996, pp. 99–114.
- I. A. Semaev, Evaluation of linear relations between vectors of a lattice in Euclidean space, Algorithmic Number Theory, Proceedings of ANTS-3, Lecture Notes in Computer Science, vol. 1423, Springer-Verlag, New York, 1998, pp. 311–323.
- E. R. Canfield, Paul Erdős, and Carl Pomerance, On a problem of Oppenheim concerning “factorisatio numerorum”, J. Number Theory 17 (1983), no. 1, 1–28. MR 712964, DOI 10.1016/0022-314X(83)90002-1
- Douglas H. Wiedemann, Solving sparse linear equations over finite fields, IEEE Trans. Inform. Theory 32 (1986), no. 1, 54–62. MR 831560, DOI 10.1109/TIT.1986.1057137
- H. W. Lenstra Jr., Factoring integers with elliptic curves, Ann. of Math. (2) 126 (1987), no. 3, 649–673. MR 916721, DOI 10.2307/1971363
- Victor Shoup, Searching for primitive roots in finite fields, Math. Comp. 58 (1992), no. 197, 369–380. MR 1106981, DOI 10.1090/S0025-5718-1992-1106981-9
Bibliographic Information
- Igor A. Semaev
- Affiliation: Profsoyuznaya ul. 43, korp. 2, kv. 723, 117420 Moscow, Russia
- Email: semaev@box.ru
- Received by editor(s): July 16, 1998
- Received by editor(s) in revised form: April 3, 2000
- Published electronically: October 17, 2000
- © Copyright 2000 American Mathematical Society
- Journal: Math. Comp. 71 (2002), 363-377
- MSC (2000): Primary 11Y16, 94A60
- DOI: https://doi.org/10.1090/S0025-5718-00-01308-9
- MathSciNet review: 1863007