Projection method III: Spatial discretization on the staggered grid
HTML articles powered by AMS MathViewer
- by Weinan E and Jian-Guo Liu;
- Math. Comp. 71 (2002), 27-47
- DOI: https://doi.org/10.1090/S0025-5718-01-01313-8
- Published electronically: May 14, 2001
- PDF | Request permission
Abstract:
In E & Liu (SIAM J Numer. Anal., 1995), we studied convergence and the structure of the error for several projection methods when the spatial variable was kept continuous (we call this the semi-discrete case). In this paper, we address similar questions for the fully discrete case when the spatial variables are discretized using a staggered grid. We prove that the numerical solution in velocity has full accuracy up to the boundary, despite the fact that there are numerical boundary layers present in the semi-discrete solutions.References
- John B. Bell, Phillip Colella, and Harland M. Glaz, A second-order projection method for the incompressible Navier-Stokes equations, J. Comput. Phys. 85 (1989), no. 2, 257–283. MR 1029192, DOI 10.1016/0021-9991(89)90151-4
- Alexandre Joel Chorin, Numerical solution of the Navier-Stokes equations, Math. Comp. 22 (1968), 745–762. MR 242392, DOI 10.1090/S0025-5718-1968-0242392-2
- Hermann Kober, Transformationen von algebraischem Typ, Ann. of Math. (2) 40 (1939), 549–559 (German). MR 96, DOI 10.2307/1968939
- Weinan E and J.-G. Liu, Projection method for viscous incompressible flows, in “Numerical Methods in Applied Sciences”, edited by W. Cai and C.-W. Shu, Science Press New York, Ltd, New York, (1996), 78-96
- Weinan E and J.-G. Liu, Gauge method for viscous incompressible flows, preprint, (1996)
- M. Fortin, R. Peyret, and R. Temam, Résolution numérique des équations de Navier-Stokes pour un fluide incompressible, J. Mécanique 10 (1971), 357–390 (French, with English summary). MR 421338
- F.H. Harlow and J.E. Welch, Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Phys. Fluids, 8 (1965) 2182-2189.
- John G. Heywood and Rolf Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem. III. Smoothing property and higher order error estimates for spatial discretization, SIAM J. Numer. Anal. 25 (1988), no. 3, 489–512. MR 942204, DOI 10.1137/0725032
- J. Kim and P. Moin, Application of a fractional-step method to incompressible Navier-Stokes equations, J. Comput. Phys. 59 (1985), no. 2, 308–323. MR 796611, DOI 10.1016/0021-9991(85)90148-2
- Jie Shen, On error estimates of projection methods for Navier-Stokes equations: first-order schemes, SIAM J. Numer. Anal. 29 (1992), no. 1, 57–77. MR 1149084, DOI 10.1137/0729004
- Jie Shen, On error estimates of some higher order projection and penalty-projection methods for Navier-Stokes equations, Numer. Math. 62 (1992), no. 1, 49–73. MR 1159045, DOI 10.1007/BF01396220
- R. Témam, Sur l’approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires. II, Arch. Rational Mech. Anal. 33 (1969), 377–385 (French). MR 244654, DOI 10.1007/BF00247696
- J. van Kan, A second-order accurate pressure-correction scheme for viscous incompressible flow, SIAM J. Sci. Statist. Comput. 7 (1986), no. 3, 870–891. MR 848569, DOI 10.1137/0907059
- T. N. E. Greville, Some extensions of Mr. Beers’s method of interpolation, Record. Amer. Inst. Actuar. 34 (1945), 188–193. MR 20001
- B.R. Wetton, Ph.D Dissertation, New York University, 1991.
- Brian R. Wetton, Error analysis for Chorin’s original fully discrete projection method and regularizations in space and time, SIAM J. Numer. Anal. 34 (1997), no. 5, 1683–1697. MR 1472190, DOI 10.1137/S0036142995289986
Bibliographic Information
- Weinan E
- Affiliation: Courant Institute of Mathematical Sciences, New York, New York 10012
- MR Author ID: 214383
- ORCID: 0000-0003-0272-9500
- Email: weinan@cims.nyu.edu
- Jian-Guo Liu
- Affiliation: Institute for Physical Science and Technology and Department of Mathematics, University of Maryland, College Park, Maryland 20742
- MR Author ID: 233036
- ORCID: 0000-0002-9911-4045
- Email: jliu@math.umd.edu
- Received by editor(s): May 19, 1997
- Received by editor(s) in revised form: March 1, 2000
- Published electronically: May 14, 2001
- © Copyright 2001 American Mathematical Society
- Journal: Math. Comp. 71 (2002), 27-47
- MSC (2000): Primary 65M06, 76M20
- DOI: https://doi.org/10.1090/S0025-5718-01-01313-8
- MathSciNet review: 1862987