On the primality of $n! \pm 1$ and $2 \times 3 \times 5 \times \dotsm \times p \pm 1$
HTML articles powered by AMS MathViewer
- by Chris K. Caldwell and Yves Gallot;
- Math. Comp. 71 (2002), 441-448
- DOI: https://doi.org/10.1090/S0025-5718-01-01315-1
- Published electronically: May 11, 2001
- PDF | Request permission
Abstract:
For each prime $p$, let $p\#$ be the product of the primes less than or equal to $p$. We have greatly extended the range for which the primality of $n! \pm 1$ and $p\# \pm 1$ are known and have found two new primes of the first form ($6380!+1, 6917!-1$) and one of the second ($42209\#+1$). We supply heuristic estimates on the expected number of such primes and compare these estimates to the number actually found.References
- Eric Bach and Jeffrey Shallit, Algorithmic number theory. Vol. 1, Foundations of Computing Series, MIT Press, Cambridge, MA, 1996. Efficient algorithms. MR 1406794
- D. Bailey, FFTs in external or hierarchical memory, Journal of Supercomputing 4:1 (1990), 23–35.
- Paul T. Bateman and Roger A. Horn, A heuristic asymptotic formula concerning the distribution of prime numbers, Math. Comp. 16 (1962), 363–367. MR 148632, DOI 10.1090/S0025-5718-1962-0148632-7
- Anders Björn and Hans Riesel, Factors of generalized Fermat numbers, Math. Comp. 67 (1998), no. 221, 441–446. With microfiche supplement. MR 1433262, DOI 10.1090/S0025-5718-98-00891-6
- Alan Borning, Some results for $k\,!\pm 1$ and $2\cdot 3\cdot 5\cdots p\pm 1$, Math. Comp. 26 (1972), 567–570. MR 308018, DOI 10.1090/S0025-5718-1972-0308018-5
- John Brillhart, D. H. Lehmer, and J. L. Selfridge, New primality criteria and factorizations of $2^{m}\pm 1$, Math. Comp. 29 (1975), 620–647. MR 384673, DOI 10.1090/S0025-5718-1975-0384673-1
- Olga Taussky, An algebraic property of Laplace’s differential equation, Quart. J. Math. Oxford Ser. 10 (1939), 99–103. MR 83, DOI 10.1093/qmath/os-10.1.99
- Joseph H. Silverman and John Tate, Rational points on elliptic curves, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1992. MR 1171452, DOI 10.1007/978-1-4757-4252-7
- Henri Cohen, A course in computational algebraic number theory, Graduate Texts in Mathematics, vol. 138, Springer-Verlag, Berlin, 1993. MR 1228206, DOI 10.1007/978-3-662-02945-9
- Richard E. Crandall, Topics in advanced scientific computation, Springer-Verlag, New York; TELOS. The Electronic Library of Science, Santa Clara, CA, 1996. MR 1392472, DOI 10.1007/978-1-4612-2334-4
- Richard Crandall, Karl Dilcher, and Carl Pomerance, A search for Wieferich and Wilson primes, Math. Comp. 66 (1997), no. 217, 433–449. MR 1372002, DOI 10.1090/S0025-5718-97-00791-6
- H. Dubner, The development of a powerful low-cost computer for number theory applications, J. Recreational Math. 18 (1985-86), 81–86.
- —, Factorial and primorial primes, J. Recreational Math. 19:3 (1987), 197–203.
- —, A new primorial prime, J. Recreational Math. 21:4 (1989), 276.
- Harvey Dubner, Large Sophie Germain primes, Math. Comp. 65 (1996), no. 213, 393–396. MR 1320893, DOI 10.1090/S0025-5718-96-00670-9
- H. Dubner and Y. Gallot, Distribution of generalized Fermat prime numbers, Preprint, 1999.
- Harvey Dubner and Wilfrid Keller, New Fibonacci and Lucas primes, Math. Comp. 68 (1999), no. 225, 417–427, S1–S12. MR 1484896, DOI 10.1090/S0025-5718-99-00981-3
- Pierre Dusart, The $k$th prime is greater than $k(\ln k+\ln \ln k-1)$ for $k\geq 2$, Math. Comp. 68 (1999), no. 225, 411–415. MR 1620223, DOI 10.1090/S0025-5718-99-01037-6
- Garrett Birkhoff and Morgan Ward, A characterization of Boolean algebras, Ann. of Math. (2) 40 (1939), 609–610. MR 9, DOI 10.2307/1968945
- Y. Gallot, Proth.exe: a windows program for finding very large primes, 1999, http://www.utm.edu/research/primes/programs/gallot/.
- G. H. Hardy, Collected papers of G. H. Hardy (Including Joint papers with J. E. Littlewood and others). Vol. I, Clarendon Press, Oxford, 1966. Edited by a committee appointed by the London Mathematical Society. MR 201267
- G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 5th ed., The Clarendon Press, Oxford University Press, New York, 1979. MR 568909
- Wilfrid Keller, New Cullen primes, Math. Comp. 64 (1995), no. 212, 1733–1741, S39–S46. With a biographical sketch of James Cullen by T. G. Holt and a supplement by Keller and Wolfgang Niebuhr. MR 1308456, DOI 10.1090/S0025-5718-1995-1308456-3
- Donald E. Knuth, The art of computer programming, 2nd ed., Addison-Wesley Series in Computer Science and Information Processing, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1975. Volume 1: Fundamental algorithms. MR 378456
- P. Hebroni, Sur les inverses des éléments dérivables dans un anneau abstrait, C. R. Acad. Sci. Paris 209 (1939), 285–287 (French). MR 14
- P Mihailescu and C. Nash, Binary tree evaluation method for Lucas-Lehmer primality tests, preprint, 1999.
- C. Nash, 42209#+1 is prime, personal communication to the authors, May 1999.
- Manfred R. Schroeder, Where is the next Mersenne prime hiding?, Math. Intelligencer 5 (1983), no. 3, 31–33. MR 737688, DOI 10.1007/BF03026569
- F. Proth, Théorèmes sur Les Nombres Premiers, C. R. Acad. Sci. Paris 85 (1877), 329–331.
- Manfred R. Schroeder, Where is the next Mersenne prime hiding?, Math. Intelligencer 5 (1983), no. 3, 31–33. MR 737688, DOI 10.1007/BF03026569
- Daniel Shanks, Solved and unsolved problems in number theory, 2nd ed., Chelsea Publishing Co., New York, 1978. MR 516658
- Wacław Sierpiński, Elementary theory of numbers, Monografie Matematyczne [Mathematical Monographs], Tom 42, Państwowe Wydawnictwo Naukowe, Warsaw, 1964. Translated from Polish by A. Hulanicki. MR 175840
- Mark Templer, On the primality of $k!+1$ and $2\ast 3$ $\ast 5\ast \cdots \ast \,p+1$, Math. Comp. 34 (1980), no. 149, 303–304. MR 551306, DOI 10.1090/S0025-5718-1980-0551306-2
- William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical recipes in FORTRAN, 2nd ed., Cambridge University Press, Cambridge, 1992. The art of scientific computing; With a separately available computer disk. MR 1196230
- Samuel S. Wagstaff Jr., Divisors of Mersenne numbers, Math. Comp. 40 (1983), no. 161, 385–397. MR 679454, DOI 10.1090/S0025-5718-1983-0679454-X
Bibliographic Information
- Chris K. Caldwell
- Affiliation: Department of Mathematics and Computer Science, University of Tennessee at Martin, Martin, Tennessee 38238
- Email: caldwell@utm.edu
- Yves Gallot
- Affiliation: Department of Mathematics and Computer Science, University of Tennessee at Martin, Martin, Tennessee 38238
- Address at time of publication: 12 bis rue Perrey, 31400 Toulouse, France
- Email: galloty@wanadoo.fr
- Received by editor(s): March 21, 2000
- Published electronically: May 11, 2001
- Additional Notes: The first author would like to thank the fellow faculty members who allowed us to use their computers’ idle time over a period of months, especially David Ray and John Schommer.
- © Copyright 2001 American Mathematical Society
- Journal: Math. Comp. 71 (2002), 441-448
- MSC (2000): Primary 11A41; Secondary 11N05, 11A51
- DOI: https://doi.org/10.1090/S0025-5718-01-01315-1
- MathSciNet review: 1863013