Merging the Bramble-Pasciak-Steinbach and the Crouzeix-Thomée criterion for $H^1$-stability of the $L^2$-projection onto finite element spaces
HTML articles powered by AMS MathViewer
- by Carsten Carstensen;
- Math. Comp. 71 (2002), 157-163
- DOI: https://doi.org/10.1090/S0025-5718-01-01316-3
- Published electronically: May 7, 2001
- PDF | Request permission
Abstract:
Suppose $\mathcal {S}\subset H^1(\Omega )$ is a finite-dimensional linear space based on a triangulation $\mathcal {T}$ of a domain $\Omega$, and let $\Pi :L^2(\Omega )\to L^2(\Omega )$ denote the $L^2$-projection onto $\mathcal {S}$. Provided the mass matrix of each element $T\in \mathcal {T}$ and the surrounding mesh-sizes obey the inequalities due to Bramble, Pasciak, and Steinbach or that neighboring element-sizes obey the global growth-condition due to Crouzeix and Thomée, $\Pi$ is $H^1$-stable: For all $u\in H^1(\Omega )$ we have $\Vert \Pi u\Vert _{H^1(\Omega )}\le C \|u\|{ H^1(\Omega )}$ with a constant $C$ that is independent of, e.g., the dimension of $\mathcal {S}$. This paper provides a more flexible version of the Bramble-Pasciak- Steinbach criterion for $H^1$-stability on an abstract level. In its general version, (i) the criterion is applicable to all kind of finite element spaces and yields, in particular, $H^1$-stability for nonconforming schemes on arbitrary (shape-regular) meshes; (ii) it is weaker than (i.e., implied by) either the Bramble-Pasciak-Steinbach or the Crouzeix-Thomée criterion for regular triangulations into triangles; (iii) it guarantees $H^1$-stability of $\Pi$ a priori for a class of adaptively-refined triangulations into right isosceles triangles.References
- J. H. Bramble, J. E. Pasciak, O. Steinbach: On the stability of the $L_2$-projection in $H^1(\Omega )$. Math. Comp. (this journal, previous article).
- Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, Texts in Applied Mathematics, vol. 15, Springer-Verlag, New York, 1994. MR 1278258, DOI 10.1007/978-1-4757-4338-8
- Carsten Carstensen, Quasi-interpolation and a posteriori error analysis in finite element methods, M2AN Math. Model. Numer. Anal. 33 (1999), no. 6, 1187–1202. MR 1736895, DOI 10.1051/m2an:1999140
- C. Carstensen, S. A. Funken: Constants in Clément-interpolation error and residual based a posteriori estimates in finite element methods. East-West Journal of Numerical Analysis 8 (2000) 153-175.
- Carsten Carstensen and Rüdiger Verfürth, Edge residuals dominate a posteriori error estimates for low order finite element methods, SIAM J. Numer. Anal. 36 (1999), no. 5, 1571–1587. MR 1706735, DOI 10.1137/S003614299732334X
- Philippe G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 520174
- Ph. Clément, Approximation by finite element functions using local regularization, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér. 9 (1975), no. no. , no. R-2, 77–84 (English, with French summary). MR 400739
- M. Crouzeix and V. Thomée, The stability in $L_p$ and $W^1_p$ of the $L_2$-projection onto finite element function spaces, Math. Comp. 48 (1987), no. 178, 521–532. MR 878688, DOI 10.1090/S0025-5718-1987-0878688-2
- O. Steinbach: On the stability of the $L_2$ projection in fractional Sobolev spaces. Numerische Mathematik (2000) published online October 16, 2000.
Bibliographic Information
- Carsten Carstensen
- Affiliation: Mathematisches Seminar, Christian-Albrechts-Universität zu Kiel Ludewig-Meyn-Str. 4, D-24098 Kiel, Germany
- Email: cc@numerik.uni-kiel.de
- Received by editor(s): January 11, 2000
- Received by editor(s) in revised form: May 30, 2000
- Published electronically: May 7, 2001
- © Copyright 2001 American Mathematical Society
- Journal: Math. Comp. 71 (2002), 157-163
- MSC (2000): Primary 65N30, 65R20, 73C50
- DOI: https://doi.org/10.1090/S0025-5718-01-01316-3
- MathSciNet review: 1862993