Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society since 1960 (published as Mathematical Tables and other Aids to Computation 1943-1959), Mathematics of Computation is devoted to research articles of the highest quality in computational mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2024 MCQ for Mathematics of Computation is 1.78.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Backward Euler discretization of fully nonlinear parabolic problems
HTML articles powered by AMS MathViewer

by C. González, A. Ostermann, C. Palencia and M. Thalhammer;
Math. Comp. 71 (2002), 125-145
DOI: https://doi.org/10.1090/S0025-5718-01-01330-8
Published electronically: July 22, 2001

Abstract:

This paper is concerned with the time discretization of nonlinear evolution equations. We work in an abstract Banach space setting of analytic semigroups that covers fully nonlinear parabolic initial-boundary value problems with smooth coefficients. We prove convergence of variable stepsize backward Euler discretizations under various smoothness assumptions on the exact solution. We further show that the geometric properties near a hyperbolic equilibrium are well captured by the discretization. A numerical example is given.
References
Similar Articles
Bibliographic Information
  • C. González
  • Affiliation: Departamento de Matemática Aplicada y Computación, Facultad de Ciencias, Universidad de Valladolid, E-47011 Valladolid, Spain
  • Email: cesareo@mac.cie.uva.es
  • A. Ostermann
  • Affiliation: Institut für Technische Mathematik, Geometrie und Bauinformatik, Universität Innsbruck, Technikerstrasse 13, A-6020 Innsbruck, Austria
  • Address at time of publication: Section de mathématiques, Université de Genève, rue du Lièvre 2–4, CH-1211 Genève 24, Switzerland
  • Email: Alexander.Ostermann@uibk.ac.at, Alexander.Ostermann@math.unige.ch
  • C. Palencia
  • Affiliation: Departamento de Matemática Aplicada y Computación, Universidad de Valladolid, Facultad de Ciencias, E-47011 Valladolid, Spain
  • Email: palencia@mac.cie.uva.es
  • M. Thalhammer
  • Affiliation: Institut für Technische Mathematik, Geometrie und Bauinformatik, Universität Innsbruck, Technikerstrasse 13, A-6020 Innsbruck, Austria
  • MR Author ID: 661917
  • Email: Mechthild.Thalhammer@uibk.ac.at
  • Received by editor(s): January 6, 2000
  • Published electronically: July 22, 2001
  • Additional Notes: The authors acknowledge financial support from Acciones Integradas Hispano-Austríacas 1998/99
  • © Copyright 2001 American Mathematical Society
  • Journal: Math. Comp. 71 (2002), 125-145
  • MSC (2000): Primary 65M12, 65M15; Secondary 35K55, 35R35, 65L06, 65L20
  • DOI: https://doi.org/10.1090/S0025-5718-01-01330-8
  • MathSciNet review: 1862991