Asymptotic properties of the spectral test, diaphony, and related quantities
HTML articles powered by AMS MathViewer
- by Hannes Leeb;
- Math. Comp. 71 (2002), 297-309
- DOI: https://doi.org/10.1090/S0025-5718-01-01356-4
- Published electronically: August 2, 2001
- PDF | Request permission
Abstract:
This paper presents the limit laws of discrepancies defined via exponential sums, and algorithms (with error bounds) to approximate the corresponding distribution functions. The results cover the weighted and the nonweighted spectral test of Hellekalek and various instances of the general discrepancies of Hickernell and Hoogland and Kleiss for the exponential function system, as well as classical quantities like the spectral test, diaphony, and the Zaremba figure of merit.References
- M. J. Buckley and G. K. Eagleson. An approximation to the distribution of quadratic forms in normal random variables. Austral. J. Statist., 30A:150–159, 1988.
- R. R. Coveyou and R. D. Macpherson, Fourier analysis of uniform random number generators, J. Assoc. Comput. Mach. 14 (1967), 100–119. MR 221727, DOI 10.1145/321371.321379
- R. Cranley and T. N. L. Patterson, Randomization of number theoretic methods for multiple integration, SIAM J. Numer. Anal. 13 (1976), no. 6, 904–914. MR 494820, DOI 10.1137/0713071
- R. W. Farebrother. The distribution of a quadratic form in normal variables. J. Royal Statist. Soc. C, 39:294–309, 1990.
- Henri Faure, Discrépance et diaphonie en dimension un, Advances in number theory (Kingston, ON, 1991) Oxford Sci. Publ., Oxford Univ. Press, New York, 1993, pp. 411–419 (French, with French summary). MR 1368437
- Karin Frank and Stefan Heinrich, Computing discrepancies related to spaces of smooth periodic functions, Monte Carlo and quasi-Monte Carlo methods 1996 (Salzburg), Lect. Notes Stat., vol. 127, Springer, New York, 1998, pp. 238–250. MR 1644523, DOI 10.1007/978-1-4612-1690-2_{1}5
- V. S. Grozdanov, On the diaphony of two-dimensional finite sequences, C. R. Acad. Bulgare Sci. 48 (1995), no. 4, 15–18. MR 1376884
- S. Heinrich, Efficient algorithms for computing the $L_2$-discrepancy, Math. Comp. 65 (1996), no. 216, 1621–1633. MR 1351202, DOI 10.1090/S0025-5718-96-00756-9
- Peter Hellekalek, On the assessment of random and quasi-random point sets, Random and quasi-random point sets, Lect. Notes Stat., vol. 138, Springer, New York, 1998, pp. 49–108. MR 1662840, DOI 10.1007/978-1-4612-1702-2_{2}
- Peter Hellekalek and Hannes Leeb, Dyadic diaphony, Acta Arith. 80 (1997), no. 2, 187–196. MR 1450924, DOI 10.4064/aa-80-2-187-196
- P. Hellekalek and H. Niederreiter. The weighted spectral test: diaphony. ACM Trans. Modeling and Computer Simulation, 8:43–60, 1998.
- Fred J. Hickernell, A generalized discrepancy and quadrature error bound, Math. Comp. 67 (1998), no. 221, 299–322. MR 1433265, DOI 10.1090/S0025-5718-98-00894-1
- Fred J. Hickernell, Lattice rules: how well do they measure up?, Random and quasi-random point sets, Lect. Notes Stat., vol. 138, Springer, New York, 1998, pp. 109–166. MR 1662841, DOI 10.1007/978-1-4612-1702-2_{3}
- J. Hoogland and R. Kleiss. Discrepancy-based error estimates for quasi-Monte Carlo. I: general formalism. Comp. Phys. Comm., 98:111–127, 1996.
- J. Hoogland and R. Kleiss. Discrepancy-based error estimates for quasi-Monte Carlo. II: results for one dimension. Comp. Phys. Comm., 98:128–136, 1996.
- Hannes Leeb, Weak limits for the diaphony, Monte Carlo and quasi-Monte Carlo methods 1996 (Salzburg), Lect. Notes Stat., vol. 127, Springer, New York, 1998, pp. 330–339. MR 1644530, DOI 10.1007/978-1-4612-1690-2_{2}3
- Jia-Juan Liang, Kai-Tai Fang, Fred J. Hickernell, and Runze Li, Testing multivariate uniformity and its applications, Math. Comp. 70 (2001), no. 233, 337–355. MR 1680903, DOI 10.1090/S0025-5718-00-01203-5
- Michael B. Marcus and Gilles Pisier, Random Fourier series with applications to harmonic analysis, Annals of Mathematics Studies, No. 101, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1981. MR 630532
- Art B. Owen, Randomly permuted $(t,m,s)$-nets and $(t,s)$-sequences, Monte Carlo and quasi-Monte Carlo methods in scientific computing (Las Vegas, NV, 1994) Lect. Notes Stat., vol. 106, Springer, New York, 1995, pp. 299–317. MR 1445791, DOI 10.1007/978-1-4612-2552-2_{1}9
- L. Brutman and D. Toledano, An extremal problem of Erdős in interpolation theory, Comput. Math. Appl. 34 (1997), no. 12, 37–47. MR 1491245, DOI 10.1016/S0898-1221(97)00232-0
- Art B. Owen, Scrambled net variance for integrals of smooth functions, Ann. Statist. 25 (1997), no. 4, 1541–1562. MR 1463564, DOI 10.1214/aos/1031594731
- David Pollard, Convergence of stochastic processes, Springer Series in Statistics, Springer-Verlag, New York, 1984. MR 762984, DOI 10.1007/978-1-4612-5254-2
- André van Hameren, Ronald Kleiss, and Jiri Hoogland, Gaussian limits for discrepancies. I. Asymptotic results, Comput. Phys. Comm. 107 (1997), no. 1-3, 1–20. MR 1488791, DOI 10.1016/S0010-4655(97)00105-7
- P. Zinterhof, Über einige Abschätzungen bei der Approximation von Funktionen mit Gleichverteilungsmethoden, Österreich. Akad. Wiss. Math.-Naturwiss. Kl. S.-B. II 185 (1976), no. 1-3, 1, 121–132 (German). MR 501760
- P. Zinterhof and H. Stegbuchner, Trigonometrische Approximation mit Gleichverteilungsmethoden, Studia Sci. Math. Hungar. 13 (1978), no. 3-4, 273–289 (1981) (German, with English summary). MR 620142
Bibliographic Information
- Hannes Leeb
- Affiliation: Department of Statistics, University of Vienna, Universitätsstrasse 5, A-1010 Vienna, Austria
- Email: hannes.leeb@univie.ac.at
- Received by editor(s): September 9, 1999
- Received by editor(s) in revised form: May 5, 2000
- Published electronically: August 2, 2001
- Additional Notes: Research supported by the Austrian Science Foundation (FWF), project no. P11143-MAT
- © Copyright 2001 American Mathematical Society
- Journal: Math. Comp. 71 (2002), 297-309
- MSC (2000): Primary 65D30, 11K06, 11K45, 60F05, 60G35
- DOI: https://doi.org/10.1090/S0025-5718-01-01356-4
- MathSciNet review: 1863001
Dedicated: I dedicate the present work to the memory of Hans Stegbuchner