Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society since 1960 (published as Mathematical Tables and other Aids to Computation 1943-1959), Mathematics of Computation is devoted to research articles of the highest quality in computational mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2024 MCQ for Mathematics of Computation is 1.78.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Lie symmetries and differential Galois groups of linear equations
HTML articles powered by AMS MathViewer

by W. R. Oudshoorn and M. van der Put;
Math. Comp. 71 (2002), 349-361
DOI: https://doi.org/10.1090/S0025-5718-01-01397-7
Published electronically: October 4, 2001

Abstract:

For a linear ordinary differential equation the Lie algebra of its infinitesimal Lie symmetries is compared with its differential Galois group. For this purpose an algebraic formulation of Lie symmetries is developed. It turns out that there is no direct relation between the two above objects. In connection with this a new algorithm for computing the Lie symmetries of a linear ordinary differential equation is presented.
References
  • Irving Kaplansky, An introduction to differential algebra, 2nd ed., Publications de l’Institut de Mathématique de l’Université de Nancago, No. V, Hermann, Paris, 1976. Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1251. MR 460303
  • Jorge Krause and Louis Michel, Équations différentielles linéaires d’ordre $n>2$ ayant une algèbre de Lie de symétrie de dimension $n+4$, C. R. Acad. Sci. Paris Sér. I Math. 307 (1988), no. 18, 905–910 (French, with English summary). MR 978467
  • S. Lie, Vorlesungen über continuierliche Gruppen mit geometrischen und anderen Anwendungen, Bearbeitet und herausgegeben von Dr. G. Scheffers, Teubner, Leipzig, 1893.
  • S. Lie, Klassifikation und Integration von gewöhnlicher Differentialgleichungen zwischen $x,y$, die eine Gruppe von Transformationen gestetten I, Math. Ann. 22 (1888), 213–253.
  • F.M. Mahomed and P.G.L. Leach, Symmetry Lie algebras of $n$th order ordinary differential equations, J. Math. Anal. Appl. 151 (1990), 80–107.
  • Peter J. Olver, Applications of Lie groups to differential equations, Graduate Texts in Mathematics, vol. 107, Springer-Verlag, New York, 1986. MR 836734, DOI 10.1007/978-1-4684-0274-2
  • Peter J. Olver, Equivalence, invariants, and symmetry, Cambridge University Press, Cambridge, 1995. MR 1337276, DOI 10.1017/CBO9780511609565
  • Marius van der Put, Galois theory of differential equations, algebraic groups and Lie algebras, J. Symbolic Comput. 28 (1999), no. 4-5, 441–472. Differential algebra and differential equations. MR 1731933, DOI 10.1006/jsco.1999.0310
  • Hans Stephani, Differential equations, Cambridge University Press, Cambridge, 1989. Their solution using symmetries. MR 1041800
Similar Articles
Bibliographic Information
  • W. R. Oudshoorn
  • Affiliation: Prinsengracht 275 Den Haag, The Netherlands
  • Email: woudshoo@sctcorp.com
  • M. van der Put
  • Affiliation: Department of Mathematics, P.O. Box 800, 9700 AV, Groningen, The Netherlands
  • Email: mvdput@math.rug.nl
  • Received by editor(s): October 13, 1999
  • Received by editor(s) in revised form: January 24, 2000
  • Published electronically: October 4, 2001
  • © Copyright 2001 American Mathematical Society
  • Journal: Math. Comp. 71 (2002), 349-361
  • MSC (2000): Primary 34A30, 34G34, 34Mxx, 65L99
  • DOI: https://doi.org/10.1090/S0025-5718-01-01397-7
  • MathSciNet review: 1863006