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INVERSE AND SATURATION THEOREMS
FOR RADIAL BASIS FUNCTION INTERPOLATION

ROBERT SCHABACK AND HOLGER WENDLAND

Abstract. While direct theorems for interpolation with radial basis functions
are intensively investigated, little is known about inverse theorems so far. This
paper deals with both inverse and saturation theorems. For an inverse theorem
we especially show that a function that can be approximated sufficiently fast
must belong to the native space of the basis function in use. In case of thin
plate spline interpolation we also give certain saturation theorems.

1. Introduction

Direct and inverse theorems play an important role in classical approximation
theory. Examples can be found in [2, 10]. The main idea can be described as fol-
lows. Suppose the elements of a linear space (V, ‖ · ‖) should be approximated by
elements of finite dimensional subspaces Vh ⊆ V , where h serves as a discretiza-
tion index. Denote the approximation process by Sh : V → Vh. Then the direct
theorems conclude error estimates from additional information on the elements to
be approximated: If f is an element of a subspace G ⊆ V , then the error can be
bounded by

‖f − Shf‖ ≤ cfhµ.(1.1)

On the other hand the inverse theorems try to conclude information on f from the
way f can be approximated: If f ∈ V satisfies (1.1), then f must belong to a certain
subspace G ⊆ V . The situation is optimal if the subspaces and the approximation
orders coincide in both the direct and the inverse theorems. The subspace G consists
normally of smooth functions.

Finally, saturation theorems give upper bounds on the possible approximation
order: If f ∈ G can be approximated by

‖f − Shf‖ ≤ cfhν ,

where ν is a certain number larger than µ, then f must belong to a trivial subspace
N ⊆ V .

It is the aim of this paper to give both inverse and saturation theorems in the
context of radial basis function interpolation. In case of direct and inverse theorems
we shall take the native space GΩ,Φ, which we introduce in the third section, as the
space G of smoother functions. We will look for the approximation order we can
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achieve from this fact and for the order we need to show that a function belongs to
the native space.

Our main results in case of inverse theorems deal with basis functions that gener-
ate Sobolev spaces as their native spaces. Thus the native space is indeed a certain
smoothness class. But even in the case of Gaussians where the native space is rather
small, it contains at least all functions with a compactly supported Fourier trans-
form. Thus the native space for Gaussians contains at least the class of functions
for which Shannon’s sampling theorem holds.

In case of saturation theorems we restrict ourselves to thin plate spline inter-
polation and show that functions that can be approximated with a high order are
necessarily polyharmonic functions.

We also provide another kind of inverse theorem. Our corresponding result does
not concern the functions to be approximated, but the basis function itself. It allows
us to draw conclusions on the smoothness of the basis function from estimates on
the power function.

Finally, we provide a new characterization of the native space generated by
radial basis function interpolants. This gives us a numerical tool to test whether
an unknown function belongs to the native space (and thus in several cases to a
Sobolev space) or not.

2. Radial basis function approximation

The theory of interpolation by radial basis functions has become popular in
recent years for reconstructing multivariate functions from scattered data. The
starting point of the reconstruction process is the choice of a conditionally positive
definite function Φ : Rd → R.

Definition 2.1. A continuous and even function Φ : Rd → R is said to be condi-
tionally positive definite of order m ∈ N0, iff for all N ∈ N, for all sets of pairwise
distinct centers X = {x1, . . . , xN} ⊆ Rd, and for all α ∈ RN \ {0} satisfying

N∑
j=1

αjp(xj) = 0 for all p ∈ Pdm,

the quadratic form

N∑
j,k=1

αjαkΦ(xj − xk)

is positive. Here, Pdm denotes the set of all d-variate polynomials with a total degree
less then m. We will denote the set of all conditionally positive definite functions
of order m by cpd(m). A conditionally positive definite function of order m = 0 is
also called a positive definite function.

Having a Φ ∈ cpd(m), the interpolant sf,X to a function f in X = {x1, . . . , xN}
is given by

sf,X(x) =
N∑
j=1

αjΦ(x − xj) +
Q∑
j=1

βjpj(x),(2.1)
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where p1, . . . , pQ form a basis of Pdm. To cope with the additional degrees of
freedom, the interpolation conditions

sf,X(xj) = f(xj), 1 ≤ j ≤ N,(2.2)

are completed by the further conditions
N∑
j=1

αjpk(xj) = 0, 1 ≤ k ≤ Q.(2.3)

In this paper we are mainly interested in positive definite functions that possess
a Fourier transform Φ̂ that decays only algebraically, i.e., there exist constants
0 < c1 ≤ c2 with

c1(1 + ‖ω‖)−d−s∞2 ≤ Φ̂(ω) ≤ c2(1 + ‖ω‖)−d−s∞2(2.4)

for ‖ω‖2 → ∞. The upper bound is important for the direct theorems, while
the lower bound is necessary for the inverse theorems. This decay condition is, for
instance, covered by Sobolev splines and compactly supported radial basis functions
of minimal degree (cf. [16]). In this situation the definition of the native space via
Fourier transform shows immediately that the global native space GRd,Φ coincides
with the classical global Sobolev space GRd,Φ = W

(d+s∞)/2
2 (Rd). A more abstract

definition of native spaces and certain extension arguments also allow us to give
direct and inverse theorems for local native spaces which coincide with local Sobolev
spaces W (d+s∞)/2

2 (Ω) under very mild conditions on the domain Ω.
But our methods do not work only for functions generating Sobolev spaces, they

work also for other basis functions. Thus we shall state the inverse theorems also
in the case of exponentially decaying Fourier transforms, which covers Gaussians
and inverse multiquadrics.

3. Direct theorems

There are several papers dealing with direct theorems, but only a few have tried
to establish inverse theorems. We will briefly repeat direct theorems as far as we
need them for our further analysis.

To state error estimates two preliminary steps have to be done. On the one hand
the function space has to be introduced for which the error bounds shall apply. On
the other hand a measure of the data density has to be given. We start with the
function space. Almost every paper (cf. [7, 8, 9, 12, 16, 17]) that deals with direct
theorems for scattered data interpolation by radial basis functions uses the native
space as the space of smooth functions. Even in the case of “radial” functions on
the sphere the concept of native spaces is carried over ([5, 4]). The easiest way to
introduce native spaces on Rd is by a Fourier transform. Suppose Φ is a positive
definite function with a nonnegative, nonvanishing Fourier transform Φ̂. Then the
native space GRd,Φ consists of all functions f : Rd → R which can be recovered via

f(x) = (2π)−d
∫
Rd
f̂(ω)eix

Tωdω,

where f̂ satisfies

f̂√
Φ̂
∈ L2(Rd).
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It follows immediately from this that the native space is a space of smooth
functions, since in general the Fourier transform of the basis function decreases and
thus f̂ has to decrease as well. Furthermore, it is obvious that if Φ̂ satisfies (2.4),
the native space coincides with a classical Sobolev space.

Another way to introduce native spaces which also takes a local domain Ω into
account is the following one. For the equivalence of both definitions see [8, 9, 13, 14]

Let Ω ⊆ Rd be given. Let us denote by

(Pdm)⊥Ω = {λα,X =
M∑
j=1

αjδxj : M ∈ N, αj ∈ R, xj ∈ Ω, λα,X |Pdm ≡ 0}

the set of all point evaluation functionals of finite support in Ω vanishing on Pdm.
Every conditionally positive definite function Φ of orderm allows us to equip (Pdm)⊥Ω
with an inner product

(λ, µ)Φ = λxµyΦ(x− y),

where λx means the action of λ with respect to the variable x.
Then we can introduce the function space

GΩ,Φ = {f ∈ C(Ω) : |λ(f)| ≤ cf‖λ‖Φ for all λ ∈ (Pdm)⊥Ω}.

We denote the smallest constant cf in the definition of GΩ,Φ by ‖f‖Φ, i.e.,

‖f‖Φ := max
λ∈(Pdm)⊥Ω\{0}

|λ(f)|
‖λ‖Φ

.

Then ‖ · ‖Φ is a semi-norm on GΩ,Φ with null space Pdm. Thus

FΩ,Φ := GΩ,Φ/Pdm
is a normed linear space which turns out to be complete.

Not only is the space Pdm a subspace of GΩ,Φ, but also all interpolating functions
(2.1) are contained in it.

Lemma 3.1. The map

F : (Pdm)⊥Ω → F ((Pdm)⊥Ω) ⊆ GΩ,Φ

λα,X 7→ λyα,XΦ(· − y)

is well defined and bijective. Furthermore, we have the relations

‖λα,X‖Φ = ‖F (λα,X)‖Φ
and

λα,X(F (λβ,Y )) = (λα,X , λβ,Y )Φ = λβ,Y (F (λα,X)).

The proof is straightforward and will be omitted.
The first step in bounding the interpolation error is to define the power function

as the norm of the pointwise error functional

PX,Φ(x) = sup
f∈GΩ,Φ\Pdm

|f(x)− sf,X(x)|
‖f‖Φ

,

which leads immediately to

|f(x)− sf,X(x)| ≤ PX,Φ(x)‖f‖Φ.
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Then the power function has to be bounded in terms of the fill distance, defined by

hX,Ω ≡ hX := sup
x∈Ω

min
xj∈X

‖x− xj‖2,

which was done in [17], for instance.

Theorem 3.2. Let Φ ∈ cpd(m) satisfy (2.4). Let Ω be a bounded and open domain
satisfying an interior cone condition. Then there exist constants h0, C, such that
for all sets of centers X with hX ≤ h0 and all x ∈ Ω the power function can be
bounded by

PX,Φ(x) ≤ Chs∞/2X(3.1)

yielding the error bound

‖f − sf,X‖L∞(Ω) ≤ Chs∞/2X ‖f‖Φ(3.2)

for f ∈ GΩ,Φ.

Actually, in [17] the theorem is stated in a more localized version, but the proof
holds true in this situation. There are several other papers giving error bounds of
this form; some of them are [1, 3, 7, 15].

Next, we need a stability result on the interpolation process. Therefore, we define
the separation distance

qX :=
1
2

min
j 6=k
‖xj − xk‖2

and cite from [11]

Theorem 3.3. Let Φ ∈ cpd(m) satisfy the decay condition (2.4). For the set of
centers X = {x1, . . . , xN} ⊆ Ω denote by AX,Φ the matrix

AX,Φ = (Φ(xj − xk))1≤j,k≤N

and by γX the smallest constant with αTAX,Φα ≥ γX‖α‖22 for α satisfying (2.3).
Then the following holds true:

1) (Stability) For all α ∈ RN satisfying (2.3) we have

αTAX,Φα ≥ γX‖α‖22 ≥ cΦqs∞X ‖α‖22
and therefore

‖(AX,Φ|VX)−1‖2,2 ≤ cΦq−s∞X

with VX := {α : λα,X ∈ (Pdm)⊥Ω} and a constant cΦ depending only on Φ.
2) (Uncertainty relation) For all x ∈ Ω \X we have

P 2
X,Φ(x) ≥ γX∪{x}.(3.3)

4. Inverse theorems concerning Φ

Principally, there are two possibilities for stating inverse theorems for interpola-
tion by radial basis functions. The first one is based only on the basis function Φ
and draws conclusions on the basis function from the fact that the power function
can be bounded like (3.1). This will be done in this section. The second is to draw
conclusions on f from estimates like (3.2) which will be the subject of the sixth
section.
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Theorem 4.1. Let Φ ∈ cpd(m) satisfy (2.4). Let Ω be bounded and open, satisfy-
ing an interior cone condition. If there exist constants β, c > 0 such that the power
function PX,Φ can be bounded by

‖PX,Φ‖L∞(Ω) ≤ chβ/2X(4.1)

for all sets X ⊆ Ω with sufficiently small hX , then

s∞ ≥ β

must be satisfied.

Proof. On account of the conditions on Ω there exists a δ > 0 and quasi-uniform
sets X = {x1, . . . , xN} ⊆ Ω with respect to this δ > 0. Here, we call a set of
pairwise distinct centers X = {x1, . . . , xN} ⊆ Ω quasi-uniform with respect to
δ > 0, iff

1) X \ {xj} is Pdm-unisolvent for 1 ≤ j ≤ N , i.e., zero is the only polynomial
from Pdm that vanishes on X \ {xj},

2) qX ≥ δhX .

Then we have (cf. [11]) hX\{xj} ≤ 2hX for hX sufficiently small. Therefore we
can use (2.4), (4.1) and the Uncertainty Relation (3.3) to derive

c2βhβX ≥ ch
β
X\{xj} ≥ P

2
X\{xj}(xj) ≥ γX ≥ cΦq

s∞
X ≥ cΦδs∞hs∞X .

Choosing a sequence of such X where hX → 0 leads to β ≤ s∞.

Theorem 4.1 shows that the decay (4.1) of the power function determines the
decay of the generalized Fourier transform of the basis function and therefore the
smoothness of the basis function itself. It also shows that there is no possibility
to improve error estimates of the form (3.2) based on upper bounds of the power
function.

5. Characterization of the native space

Our next result characterizes the functions f from the native space GΩ,Φ by
uniform boundedness of their interpolating functions with respect to the semi-norm
of the native space.

Theorem 5.1. Denote by sf,X the interpolant (2.1) to a function f ∈ C(Ω) on X
using a basis function Φ ∈ cpd(m). Then f belongs to the native space GΩ,Φ if and
only if there exists a constant cf such that ‖sf,X‖Φ ≤ cf for all X ⊆ Ω.

Proof. Assume f ∈ GΩ,Φ. Then sf,X is the best approximation to f from
span{Φ(· − x) : x ∈ X} + Pdm with respect to the ‖ · ‖Φ-semi-norm. Thus we
have

‖f − sf,X‖2Φ + ‖sf,X‖2Φ = ‖f‖2Φ,

which gives the bound ‖sf,X‖Φ ≤ ‖f‖Φ at once.
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Now, let us assume ‖sf,X‖Φ ≤ cf for all X ⊆ Ω. For an arbitrary

λα,X :=
N∑
j=1

αjδxj ∈ (Pdm)⊥Ω ,

we choose sf,X to be the interpolant on X to f satisfying the interpolation condi-
tions (2.2) and (2.3). Then sf,X belongs to GΩ,Φ and we have

λα,X(f − sf,X) = 0.

Thus we can estimate

|λα,X(f)| ≤ |λα,X(f − sf,X)|+ |λα,X(sf,X)|
≤ ‖λα,X‖Φ ‖sf,X‖Φ
≤ cf‖λα,X‖Φ.

As this holds for all λα,X we have f ∈ GΩ,Φ.

Note that Theorem 5.1 can be used as a numerical test to assess whether a
function f belongs to the native space. It is based on function values only.

6. Inverse theorems concerning f

Now we draw conclusions about a function from L∞-convergence orders of its
interpolants. To be more precise, we show that a function f ∈ C(Ω) which can be
approximated sufficently fast by radial basis function interpolants in the L∞-norm
must belong to the native space of the basis function.

Theorem 6.1. Let Ω ⊆ Rd be a bounded and open domain satisfying an interior
cone condition. The positive definite basis function Φ should satisfy the decay con-
dition (2.4). Suppose further that for some f ∈ C(Ω) there exist constants µ > 0
and cf > 0 such that ‖f − sf,X‖L∞(Ω) ≤ cfh

µ
X for all X ⊆ Ω with hX sufficiently

small. If 2µ > s∞ + d, then f must belong to the native space GΩ,Φ.

Proof. All sets of centers X that may appear in this proof shall be quasi-uniform
with respect to a fixed δ > 0.

Every interpolant sf,X defines a linear functional λα,X =
∑N

j=1 αjδxj . From
Theorem 3.3 and Lemma 3.1 we have

‖sf,X‖2Φ = ‖λα,X‖2Φ
= αTAX,Φα

= αTAX,ΦA
−1
X,ΦAX,Φα

≤ ‖A−1
X,Φ‖2,2 ‖AX,Φα‖2L2(X)

= ‖A−1
X,Φ‖2,2 ‖sf,X‖2L2(X).(6.1)

If X ⊆ Y the difference sf,Y − sf,X can be interpreted as the interpolating
function on Y to itself. This leads us to

‖sf,Y − sf,X‖2Φ ≤ ‖A−1
Y,Φ‖2,2 ‖sf,Y − sf,X‖2L2(Y )

≤ 1
γY

∑
y∈Y
|f(y)− sf,X(y)|2

≤ c−1
Φ q−s∞Y |Y |c2fh

2µ
X .
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In what follows c will denote a generic constant. Now we consider a special family
of quasi-uniform sets of centers. We assume Xn to satisfy |Xn| ≤ c2nd and

c12−n ≤ qXn ≤ hXn ≤ c22−n.

Such a choice is always possible because of the assumption made on Ω. If we take
X = Xk ⊆ Y = Xn with n ≥ k we get

‖sf,Xn − sf,Xk‖2Φ ≤ c2s∞n+dn−2µk

= c2(d+s∞)n−2µk

= c22µ(n−k)−2σn,

where σ > 0 is defined by d+ s∞ + 2σ = 2µ. Thus we can estimate the Φ-norm of
two succeeding interpolants by

‖sf,Xk+1 − sf,Xk‖Φ ≤ c2−kσ.
A telescoping sum argument leads to

‖sf,XK‖Φ ≤
K∑
k=0

‖sf,Xk+1 − sf,Xk‖Φ + ‖sf,X0‖Φ

≤ c
∞∑
j=0

2−σk + ‖sf,X0‖Φ.

≤ c

1− 2−σ
+ ‖sf,X0‖Φ.

Thus, the sequence ‖sf,Xk‖Φ is bounded. But for n ≥ k the interpolant sf,Xk
is also the interpolant to sf,Xn and therefore a best approximant to sf,Xn from
S(Xk) := span{Φ(· − x) : x ∈ Xk}+ Pdm. This leads to

‖sf,Xn − sf,Xk‖2Φ + ‖sf,Xk‖2Φ = ‖sf,Xn‖2Φ,(6.2)

which shows that the sequence ‖sf,Xk‖Φ is also increasing and therefore convergent.
Furthermore, (6.2) implies that sf,Xn is a Cauchy sequence in GΩ,Φ with a limit s̃.

Finally, we have to show that f coincides on Ω with s̃. Since we work with a
positive definite function the point evaluation functional δx, x ∈ Ω, is continuous
on the native space GΩ,Φ. This gives

|δx(f − s̃)| ≤ |δx(f − sf,Xn)|+ |δx(sf,Xn − s̃)|
≤ ‖δx‖Φ‖s̃− sf,Xn‖Φ + |(f − sf,Xn)(x)|
≤ ‖δx‖Φ ‖s̃− sf,Xn‖Φ + chµXn .

Thus we can derive f(x) = s̃(x) for all x ∈ Ω.

Note that there is a gap of d/2 between the necessary and sufficient approxi-
mation order for functions in the native space GΩ,Φ. A closer look shows that the
direct Theorem 3.2 implies for f ∈ GΩ,Φ:

‖f − sf,X‖L∞(Ω) ≤ CΦh
s∞/2‖f − sf,X‖Φ.(6.3)

The hs∞/2 term comes from the estimate on the power function and is optimal in
the sense of Theorem 4.1. On the other hand

‖f − sf,X‖L∞(Ω) ≤ Cfhs∞/2 hd/2+ε
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is so far necessary for showing f ∈ GΩ,Φ via Theorem 6.1. Thus the gap could be
closed either by showing

‖f − sf,X‖Φ ≤ Cfhd/2+ε,

or by improving our inverse theorem.
Before we come to inverse theorems for Gaussian and inverse multiquadrics, let

us remark that equation (6.1) can be rewritten as

‖sf,X‖Φ ≤ ch−(s∞+d)/2
X ‖sf,X‖L∞(Ω),

which can be seen as a kind of Bernstein inequality.
Now, let us assume for the rest of the section that the Fourier transform satisfies

Φ̂(ω) ≥ ce−c̃1‖ω‖α2 .(6.4)

This leads to estimates of the form

‖A−1
X,Φ‖2,2 ≤ cec1h

−α
X ,(6.5)

where c always denotes a generic constant. In case of multiquadrics and Gaussians
the constants α, c̃1 and c1 can be found in [11].

Theorem 6.2. Let Ω ⊂ Rd be a bounded and open domain satisfying an interior
cone condition. The positive definite basis function Φ should satisfy the decay con-
dition (6.4). Suppose further that for some f ∈ C(Ω) there exist constants c2 > c1
and cf > 0 such that ‖f−sf,X‖L∞(Ω) ≤ cfe−c2h

α
X for all X ⊆ Ω with hX sufficiently

small. Then f must belong to the native space GΩ,Φ.

Proof. The proof of Theorem 6.1 applies completely if we show that the native
space norm of the difference of two interpolants can be bounded in such a way that
the telescoping sum argument still works. But this is the case: for X ⊆ Y we can
derive

‖sf,X − sf,Y ‖Φ ≤ cec1h
−α
X

∑
y∈Y
|f(y)− sf,X(y)|2

≤ ce−c3h
−α
X |Y |

with c3 := c2−c1 > 0. Taking the same sequence of sets of centersXn as in Theorem
6.1 we see that the cardinality of Y is only polynomial in hY , which means that we
can bound two succeeding interpolants by

‖sf,Xk+1 − sf,Xk‖Φ ≤ ce−c̃32(kα)/2
.

This ensures the convergence of the telescoping sum.

7. Saturation for thin plate spline interpolation

In this section we concentrate on interpolation by thin plate or polyharmonic
splines. To be more precise we consider the functions Φd,` = φd,`(‖ · ‖2) with

φd,`(r) =
{
cd,` r

2`−d for odd d,
ed,` r

2`−d log r for even d(7.1)
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with d ≤ 2`, where the constants

cd,` =
(−1)`Γ

(
d
2 − `

)
22`πd/2Γ(`)

,

ed,` =
(−1)(d−2)/2

22`−1πd/2(`− 1)!
(
`− d

2

)
!

are determined by the fact that these functions should be the fundamental solutions
of the iterated Laplacian (see Lemma 7.2).

The functions Φd,` are conditionally positive definite of order m with m = ` −
dd/2e+ 1 on Rd and possess a generalized Fourier transform Φ̂d,` which is ‖ · ‖−2`

2

up to a constant factor. Thus interpolants come from the space

S(X) = span{Φd,`(· − x) : x ∈ X}+ Pdm

and Theorem 3.2 leads to the error bound

‖f − sf,X‖L∞(Ω) ≤ ch
`−d2
X ‖f‖Φd,` .(7.2)

For a restricted set of functions f , an improvement in [12] yields

‖f − sf,X‖L∞(Ω) ≤ cfh2`−d
X .(7.3)

In [1] the following improved error estimate is given:

Theorem 7.1. Suppose Ω is a cube in Rd and the set of centers Xh are given by
the grid points hZd ∩Ω. If f ∈ Lip(2`+ 1,Ω), then the error can be bounded by

‖f − sf,Xh‖L∞(K) ≤ cfh2`(7.4)

for every compact subset K of the interior of Ω as h→ 0.

See [1] for the exact definition of the space Lip(2`+1,Ω). Note that this estimate
is based on three additional assumptions:

• The function f is supposed to be smoother than f ∈ GΦ,Ω. This is a natural
assumption.
• The domain has to be a cube and the centers have to form a grid. This is a

consequence of the proof given in [1]. A generalization to arbitrary centers
would be useful.
• The estimates are restricted to compact subsets of the interior of the cube.

This means that boundary effects are neglected.

Nonetheless, the result gives a hint about the possible local convergence order
and we shall show that this order is also the saturation order. But before we can
do that, we need two auxiliary results:

Lemma 7.2. For every test function γ ∈ C∞0 (Rd) and every y ∈ Rd we have∫
Rd

Φd,`(x − y)∆`γ(x)dx = γ(y).

A proof can be found in [6].
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Lemma 7.3. Suppose X = {x1, . . . , xN} ⊆ Ω is given. Suppose further that γ ∈
C∞0 (Ω) satisfies X ∩ supp γ = ∅. Then for every s ∈ S(X)

(∆`s, γ)L2(Ω) = 0.

Proof. Choose an arbitrary s(x) =
∑N

j=1 αjΦd,`(x−xj)+p(x) ∈ S(X). As ∆`Pdm ≡
0 we can use Lemma 7.2 to obtain

(∆`s, γ)L2(Ω) =
N∑
j=1

αj

∫
Rd

∆`γ(x)Φd,`(x− xj)dx

=
N∑
j=1

αjγ(xj)

= 0.

Now we can give our saturation result.

Theorem 7.4. Let φd,` be any of the thin plate splines defined in (7.1). Suppose
Ω ⊆ Rd to be open and bounded, satisfying an interior cone condition. Suppose that
for f ∈ C2`(Ω) the interpolating functions sf,X on X satisfy

‖f − sf,X‖L∞(K) = o(h2`
X ) as hX → 0

for every compact subset K of Ω and all X ⊆ Ω. Then f satisfies

∆`f = 0 on Ω.

Proof. Fix x0 ∈ Ω. Choose X ⊆ Ω to be quasi-uniform with respect to a fixed
δ > 0, such that minx∈X ‖x − x0‖2 = c0hX with c0 independent of hX . Choose
a test function γ0 ∈ C∞0 (Rd) with supp γ0 = B1(0) = {x ∈ Rd : ‖x‖2 ≤ 1} and∫
γ0(x)dx = 1. Set h̃ = c0hX/2 and γh := h̃−dγ0((· − x0)/h̃). Then the support of

γh is given by Bh̃(x0) and satisfies Bh̃(x0) ∩X = ∅. Thus we can use Lemma 7.3
to get

(∆`f, γh)L2(Ω) = (∆`(f − s), γh)L2(Ω)

= (f − s,∆`γh)L2(Ω)

≤ ‖f − s‖L2(Bh̃(x0)) ‖∆`γh‖L2(Bh̃(x0))

≤ ch̃
d
2 ‖f − s‖L∞(Bh̃(x0)) ‖∆`γh‖L2(Bh̃(x0))

with s = sf,X . And because of

‖∆`γh‖2L2(Bh̃(x0)) = h̃−2d

∫
Rd
|∆`γh(x)|2dx

= h̃−d−4`

∫
Rd
|∆`γ0(x)|2dx

=: h̃−d−4`c20

we can conclude

|(∆`f, γh)L2(Ω)| ≤ ch̃−2`‖f − s‖L∞(Bh̃(x0)).

On account of the assumptions this leads to

lim
h→0+

(∆`f, γh)L2(Ω) = 0.
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On the other hand we have

lim
h→0+

(∆`f, γh)L2(Ω) = lim
h→0+

∫
Rd

(∆`f)(x0 + hx)γ0(x)dx = ∆`f(x0)

which proves ∆`f(x0) = 0.

Note that our proof also applies to the situation of classical splines. As in the
latter case, functions in the saturation class are already determined by their values
on the boundary of the domain:

Corollary 7.5. Suppose in addition to the assumptions of the last theorem that Ω
has a C` boundary ∂Ω. Then f is already determined by the values of ∂jf/∂jν,
0 ≤ j ≤ `− 1, on the boundary ∂Ω. Here ν denotes the outer unit normal vector.

This sheds some light on the influence of boundary conditions on the possibilities
to improve the approximation order `− d/2 of (7.2) towards 2`.

Finally, we want to draw the reader’s attention to the d/2-gap arising not only
in the discussion around (6.3), but also in (7.3) when compared to (7.4). If (7.2)
could be improved by hd/2, then (7.3) would by [12] improve to h2` and coincide
with (7.4). We consider closing the d/2-gap to be a challenging research task.
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