An algorithm for finding all preprojective components of the Auslander-Reiten quiver
HTML articles powered by AMS MathViewer
- by Peter Dräxler and Klara Kögerler;
- Math. Comp. 71 (2002), 743-759
- DOI: https://doi.org/10.1090/S0025-5718-01-01404-1
- Published electronically: December 21, 2001
- PDF | Request permission
Abstract:
The Auslander-Reiten quiver of a finite-dimensional associative algebra $A$ encodes information about the indecomposable finite-dimensional representations of $A$ and their homomorphisms. A component of the Auslander-Reiten quiver is called preprojective if it does not admit oriented cycles and each of its modules can be shifted into a projective module using the Auslander-Reiten translation. Preprojective components play an important role in the present research on algebras of finite and tame representation type. We present an algorithm which detects all preprojective components of a given algebra.References
- Maurice Auslander and Idun Reiten, Representation theory of Artin algebras. III. Almost split sequences, Comm. Algebra 3 (1975), 239–294. MR 379599, DOI 10.1080/00927877508822046
- Maurice Auslander, Idun Reiten, and Sverre O. Smalø, Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics, vol. 36, Cambridge University Press, Cambridge, 1995. MR 1314422, DOI 10.1017/CBO9780511623608
- R. Bautista and F. Larrión, Auslander-Reiten quivers for certain algebras of finite representation type, J. London Math. Soc. (2) 26 (1982), no. 1, 43–52. MR 667243, DOI 10.1112/jlms/s2-26.1.43
- R. Bautista, P. Gabriel, A. V. Roĭter, and L. Salmerón, Representation-finite algebras and multiplicative bases, Invent. Math. 81 (1985), no. 2, 217–285. MR 799266, DOI 10.1007/BF01389052
- Klaus Bongartz, A criterion for finite representation type, Math. Ann. 269 (1984), no. 1, 1–12. MR 756773, DOI 10.1007/BF01455993
- K. Bongartz and P. Gabriel, Covering spaces in representation-theory, Invent. Math. 65 (1981/82), no. 3, 331–378. MR 643558, DOI 10.1007/BF01396624
- Vlastimil Dlab and Claus Michael Ringel, Indecomposable representations of graphs and algebras, Mem. Amer. Math. Soc. 6 (1976), no. 173, v+57. MR 447344, DOI 10.1090/memo/0173
- P. Dräxler and J. A. de la Peña, On the existence of postprojective components in the Auslander-Reiten quiver of an algebra, Tsukuba J. Math. 20 (1996), no. 2, 457–469. MR 1422633, DOI 10.21099/tkbjm/1496163094
- Peter Gabriel, Unzerlegbare Darstellungen. I, Manuscripta Math. 6 (1972), 71–103; correction, ibid. 6 (1972), 309 (German, with English summary). MR 332887, DOI 10.1007/BF01298413
- Peter Gabriel, Auslander-Reiten sequences and representation-finite algebras, Representation theory, I (Proc. Workshop, Carleton Univ., Ottawa, Ont., 1979) Lecture Notes in Math., vol. 831, Springer, Berlin, 1980, pp. 1–71. MR 607140
- I. R. Shafarevich (ed.), Algebra. VIII, Encyclopaedia of Mathematical Sciences, vol. 73, Springer-Verlag, Berlin, 1992. Representations of finite-dimensional algebras; A translation of Algebra, VIII (Russian), Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow; Translation edited by A. I. Kostrikin and I. R. Shafarevich. MR 1239446
- Dieter Happel, Composition factors for indecomposable modules, Proc. Amer. Math. Soc. 86 (1982), no. 1, 29–31. MR 663860, DOI 10.1090/S0002-9939-1982-0663860-4
- Dieter Happel and Claus Michael Ringel, Directing projective modules, Arch. Math. (Basel) 60 (1993), no. 3, 237–246. MR 1201637, DOI 10.1007/BF01198807
- J. A. de la Peña and S. Kasjan, Constructing the preprojective components of an algebra, J. Algebra 179 (1996), no. 3, 793–807. MR 1371744, DOI 10.1006/jabr.1996.0037
- Shiping Liu, Shapes of connected components of the Auslander-Reiten quivers of Artin algebras, Representation theory of algebras and related topics (Mexico City, 1994) CMS Conf. Proc., vol. 19, Amer. Math. Soc., Providence, RI, 1996, pp. 109–137. MR 1388561
- Claus Michael Ringel, Tame algebras and integral quadratic forms, Lecture Notes in Mathematics, vol. 1099, Springer-Verlag, Berlin, 1984. MR 774589, DOI 10.1007/BFb0072870
- Tobias Scheuer, The canonical decomposition of the poset of a hammock, J. London Math. Soc. (2) 49 (1994), no. 2, 232–243. MR 1260110, DOI 10.1112/jlms/49.2.232
Bibliographic Information
- Peter Dräxler
- Affiliation: Fakultät für Mathematik, Universität Bielefeld, P.O. Box 100131, D-33501 Bielefeld, Germany
- Klara Kögerler
- Affiliation: Fakultät für Mathematik, Universität Bielefeld, P.O. Box 100131, D-33501 Bielefeld, Germany
- Received by editor(s): April 6, 1999
- Received by editor(s) in revised form: July 7, 2000
- Published electronically: December 21, 2001
- © Copyright 2001 American Mathematical Society
- Journal: Math. Comp. 71 (2002), 743-759
- MSC (2000): Primary 16G20, 16G70; Secondary 05C38, 05E99
- DOI: https://doi.org/10.1090/S0025-5718-01-01404-1
- MathSciNet review: 1885625