Approximation of the Hilbert Transform on the real line using Hermite zeros
HTML articles powered by AMS MathViewer
- by M. C. De Bonis, B. Della Vecchia and G. Mastroianni;
- Math. Comp. 71 (2002), 1169-1188
- DOI: https://doi.org/10.1090/S0025-5718-01-01338-2
- Published electronically: October 25, 2001
- PDF | Request permission
Abstract:
The authors study the Hilbert Transform on the real line. They introduce some polynomial approximations and some algorithms for its numerical evaluation. Error estimates in uniform norm are given.References
- N. I. Akhiezer, Lectures on integral transforms, Translations of Mathematical Monographs, vol. 70, American Mathematical Society, Providence, RI, 1988. Translated from the Russian by H. H. McFaden. MR 971981, DOI 10.1090/mmono/070
- N. K. Bary, A treatise on trigonometric series. Vols. I, II, The Macmillan Company, New York, 1964. Authorized translation by Margaret F. Mullins. MR 171116
- Bernard Bialecki, Sinc quadratures for Cauchy principal value integrals, Numerical integration (Bergen, 1991) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 357, Kluwer Acad. Publ., Dordrecht, 1992, pp. 81–92. MR 1198900
- M. R. Capobianco, G. Mastroianni, and M. G. Russo, Pointwise and uniform approximation of the finite Hilbert transform, Approximation and optimization, Vol. I (Cluj-Napoca, 1996) Transilvania, Cluj-Napoca, 1997, pp. 45–66. MR 1487085
- Giuliana Criscuolo and Giuseppe Mastroianni, On the convergence of an interpolatory product rule for evaluating Cauchy principal value integrals, Math. Comp. 48 (1987), no. 178, 725–735. MR 878702, DOI 10.1090/S0025-5718-1987-0878702-4
- Giuliana Criscuolo and Giuseppe Mastroianni, On the convergence of product formulas for the numerical evaluation of derivatives of Cauchy principal value integrals, SIAM J. Numer. Anal. 25 (1988), no. 3, 713–727. MR 942215, DOI 10.1137/0725043
- G. Criscuolo and G. Mastroianni, On the uniform convergence of Gaussian quadrature rules for Cauchy principal value integrals, Numer. Math. 54 (1989), no. 4, 445–461. MR 972419, DOI 10.1007/BF01396323
- Giuliana Criscuolo, Biancamaria Della Vecchia, D. S. Lubinsky, and Giuseppe Mastroianni, Functions of the second kind for Freud weights and series expansions of Hilbert transforms, J. Math. Anal. Appl. 189 (1995), no. 1, 256–296. MR 1312042, DOI 10.1006/jmaa.1995.1016
- Philip J. Davis and Philip Rabinowitz, Methods of numerical integration, 2nd ed., Computer Science and Applied Mathematics, Academic Press, Inc., Orlando, FL, 1984. MR 760629
- De Bonis M.C., Russo M.G.: Computation of the Cauchy Principal Value Integrals on the Real Line, Proceedings of the Workshop “Advanced Special Functions and Applications", eds. D. Cocolicchio, G. Dattoli and H.M. Srivastava (ARACNE, Rome, 1999).
- Z. Ditzian and V. Totik, Moduli of smoothness, Springer Series in Computational Mathematics, vol. 9, Springer-Verlag, New York, 1987. MR 914149, DOI 10.1007/978-1-4612-4778-4
- Walter Gautschi, A survey of Gauss-Christoffel quadrature formulae, E. B. Christoffel (Aachen/Monschau, 1979) Birkhäuser Verlag, Basel-Boston, Mass., 1981, pp. 72–147. MR 661060
- D. B. Hunter, Some Gauss-type formulae for the evaluation of Cauchy principal values of integrals, Numer. Math. 19 (1972), 419–424. MR 319355, DOI 10.1007/BF01404924
- Commutative harmonic analysis. I, Encyclopaedia of Mathematical Sciences, vol. 15, Springer-Verlag, Berlin, 1991. General survey; Classical aspects; A translation of Sovremennye problemy matematiki. Fundamental′nye napravleniya, Tom 15, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1987 [ MR0915768 (91b:42021)]; Translation by D. Khavinson and S. V. Kislyakov; Translation edited by V. P. Khavin and N. K. Nikol′skiĭ. MR 1134135, DOI 10.1007/978-3-662-02732-5
- S. Kumar, A note on quadrature formulae for Cauchy principal value integrals, J. Inst. Math. Appl. 26 (1980), no. 4, 447–451. MR 605402
- R. Kress and E. Martensen, Anwendung der Rechteckregel auf die reelle Hilberttransformation mit unendlichem Intervall, Z. Angew. Math. Mech. 50 (1970), T61–T64 (German). MR 282529, DOI 10.1002/zamm.19700500125
- A. L. Levin and D. S. Lubinsky, Christoffel functions, orthogonal polynomials, and Nevai’s conjecture for Freud weights, Constr. Approx. 8 (1992), no. 4, 463–535. MR 1194029, DOI 10.1007/BF01203463
- I. M. Longman, On the numerical evaluation of Cauchy principal values of integrals, Math. Tables Aids Comput. 12 (1958), 205–207. MR 100356, DOI 10.1090/S0025-5718-1958-0100356-7
- D. S. Lubinsky and Avram Sidi, Convergence of product integration rules for functions with interior and endpoint singularities over bounded and unbounded intervals, Math. Comp. 46 (1986), no. 173, 229–245. MR 815845, DOI 10.1090/S0025-5718-1986-0815845-4
- Giuseppe Mastroianni, On the convergence of product formulas for the evaluation of certain two-dimensional Cauchy principal value integrals, Math. Comp. 52 (1989), no. 185, 95–101. MR 971404, DOI 10.1090/S0025-5718-1989-0971404-7
- G. Mastroianni and G. Monegato, Convergence of product integration rules over $(0,\infty )$ for functions with weak singularities at the origin, Math. Comp. 64 (1995), no. 209, 237–249. MR 1265016, DOI 10.1090/S0025-5718-1995-1265016-0
- G. Mastroianni and G. Monegato, Nyström interpolants based on zeros of Laguerre polynomials for some Wiener-Hopf equations, IMA J. Numer. Anal. 17 (1997), no. 4, 621–642. MR 1476342, DOI 10.1093/imanum/17.4.621
- G. Mastroianni and P. E. Ricci, Error estimates for a class of integral and discrete transforms, Studia Sci. Math. Hungar. 36 (2000), no. 3-4, 291–305. MR 1798734, DOI 10.1556/SScMath.36.2000.3-4.1
- G. Mastroianni and M. G. Russo, Lagrange interpolation in weighted Besov spaces, Constr. Approx. 15 (1999), no. 2, 257–289. MR 1669080, DOI 10.1007/s003659900107
- G. Monegato, The numerical evaluation of one-dimensional Cauchy principal value integrals, Computing 29 (1982), no. 4, 337–354 (English, with German summary). MR 684742, DOI 10.1007/BF02246760
- Giovanni Monegato, Convergence of product formulas for the numerical evaluation of certain two-dimensional Cauchy principal value integrals, Numer. Math. 43 (1984), no. 2, 161–173. MR 736078, DOI 10.1007/BF01390121
- N. Mastronardi and D. Occorsio, Some numerical algorithms to evaluate Hadamard finite-part integrals, J. Comput. Appl. Math. 70 (1996), no. 1, 75–93. MR 1392387, DOI 10.1016/0377-0427(95)00134-4
- Solomon G. Mikhlin and Siegfried Prössdorf, Singular integral operators, Springer-Verlag, Berlin, 1986. Translated from the German by Albrecht Böttcher and Reinhard Lehmann. MR 881386, DOI 10.1007/978-3-642-61631-0
- Paul G. Nevai, Mean convergence of Lagrange interpolation. II, J. Approx. Theory 30 (1980), no. 4, 263–276. MR 616953, DOI 10.1016/0021-9045(80)90030-1
- Eileen L. Poiani, Mean Cesàro summability of Laguerre and Hermite series, Trans. Amer. Math. Soc. 173 (1972), 1–31. MR 310537, DOI 10.1090/S0002-9947-1972-0310537-9
- G. P. M. Poppe and C. M. J. Wijers, More efficient computation of the complex error function, ACM Trans. Math. Software 16 (1990), no. 1, 38–46. MR 1073408, DOI 10.1145/77626.77629
- V. P. Sklyarov, On the convergence of the Lagrange-Hermite interpolation process for unbounded functions, Anal. Math. 20 (1994), no. 4, 295–308 (Russian, with English summary). MR 1301166, DOI 10.1007/BF01904059
- Ian H. Sloan and William E. Smith, Properties of interpolatory product integration rules, SIAM J. Numer. Anal. 19 (1982), no. 2, 427–442. MR 650061, DOI 10.1137/0719027
- William E. Smith, Ian H. Sloan, and Alex H. Opie, Product integration over infinite intervals. I. Rules based on the zeros of Hermite polynomials, Math. Comp. 40 (1983), no. 162, 519–535. MR 689468, DOI 10.1090/S0025-5718-1983-0689468-1
- Frank Stenger, Approximations via Whittaker’s cardinal function, J. Approximation Theory 17 (1976), no. 3, 222–240. MR 481786, DOI 10.1016/0021-9045(76)90086-1
- Frank Stenger, Numerical methods based on Whittaker cardinal, or sinc functions, SIAM Rev. 23 (1981), no. 2, 165–224. MR 618638, DOI 10.1137/1023037
- Frank Stenger, Numerical methods based on sinc and analytic functions, Springer Series in Computational Mathematics, vol. 20, Springer-Verlag, New York, 1993. MR 1226236, DOI 10.1007/978-1-4612-2706-9
- Stenger F.: Summary of Sinc Approximation, preprint.
- J. Szabados, Weighted Lagrange and Hermite-Fejér interpolation on the real line, J. Inequal. Appl. 1 (1997), no. 2, 99–123. MR 1731425, DOI 10.1155/S1025583497000076
Bibliographic Information
- M. C. De Bonis
- Affiliation: Dipartimento di Matematica, Università della Basilicata, C/da Macchia Romana 85100 Potenza, Italy
- Email: mdebonis@pta.unibas.it
- B. Della Vecchia
- Affiliation: Dipartimento di Matematica, Istituto G. Castelnuovo, Università di Roma La Sapienza, P.le Aldo Moro 2, 00185 Roma, Italy
- Email: dellavecchia@iamna.iam.na.cnr.it
- G. Mastroianni
- Affiliation: Dipartimento di Matematica, Università della Basilicata, C/da Macchia Romana 85100 Potenza, Italy
- Email: mastroianni@unibas.it
- Received by editor(s): April 9, 1998
- Received by editor(s) in revised form: December 8, 1999, May 12, 2000, and August 18, 2000
- Published electronically: October 25, 2001
- Additional Notes: This work was supported by M.U.R.S.T. (ex. 40%)
- © Copyright 2001 American Mathematical Society
- Journal: Math. Comp. 71 (2002), 1169-1188
- MSC (2000): Primary 65D30, 41A05
- DOI: https://doi.org/10.1090/S0025-5718-01-01338-2
- MathSciNet review: 1898749