A computational approach to Hilbert modular group fixed points
HTML articles powered by AMS MathViewer
- by Jesse Ira Deutsch;
- Math. Comp. 71 (2002), 1271-1280
- DOI: https://doi.org/10.1090/S0025-5718-01-01403-X
- Published electronically: December 21, 2001
- PDF | Request permission
Abstract:
Some useful information is known about the fundamental domain for certain Hilbert modular groups. The six nonequivalent points with nontrivial isotropy in the fundamental domains under the action of the modular group for $\mathbf {Q} ( \sqrt 5 )$, $\mathbf {Q}( \sqrt 2 )$, and $\mathbf {Q} ( \sqrt 3 )$ have been determined previously by Gundlach. In finding these points, use was made of the exact size of the isotropy groups. Here we show that the fixed points and the isotropy groups can be found without such knowledge by use of a computer scan. We consider the cases $\mathbf {Q} ( \sqrt 5 )$ and $\mathbf {Q} ( \sqrt 2 )$. A computer algebra system and a C compiler were essential in perfoming the computations.References
- Harvey Cohn, A classical invitation to algebraic numbers and class fields, Universitext, Springer-Verlag, New York-Heidelberg, 1978. With two appendices by Olga Taussky: “Artin’s 1932 Göttingen lectures on class field theory” and “Connections between algebraic number theory and integral matrices”. MR 506156
- J. I. Deutsch, Identities on Modular Forms in Several Variables Derivable from Hecke Transformations, Dissertation, Brown University, Providence, R.I., USA, 1986.
- F. Götzky, Über eine zahlentheoretische Anwendung von Modulfunktionen zweier Veränderlicher, Math. Ann. 100 (1928), 411–437.
- Karl-Bernhard Gundlach, Die Bestimmung der Funktionen zu einigen Hilbertschen Modulgruppen, J. Reine Angew. Math. 220 (1965), 109–153 (German). MR 193069, DOI 10.1515/crll.1965.220.109
- Karl-Bernhard Gundlach, Die Fixpunkte einiger Hilbertscher Modulgruppen, Math. Ann. 157 (1965), 369–390 (German). MR 229579, DOI 10.1007/BF02028248
- B. Haible, Private communication, 1997.
- Friedrich E. P. Hirzebruch, Hilbert modular surfaces, Série des Conférences de l’Union Mathématique Internationale [Lecture Series of the International Mathematics Union], No. 4, Université de Genève, Secrétariat de l’Enseignement Mathématique, Geneva, 1973. Monographies de L’Enseignement Mathématique [Monographs of L’Enseignement Mathématique], No. 21. MR 389921
- Neal Koblitz, Introduction to elliptic curves and modular forms, Graduate Texts in Mathematics, vol. 97, Springer-Verlag, New York, 1984. MR 766911, DOI 10.1007/978-1-4684-0255-1
- J.-P. Serre, A course in arithmetic, Graduate Texts in Mathematics, No. 7, Springer-Verlag, New York-Heidelberg, 1973. Translated from the French. MR 344216
- Carl Ludwig Siegel, Advanced analytic number theory, 2nd ed., Tata Institute of Fundamental Research Studies in Mathematics, vol. 9, Tata Institute of Fundamental Research, Bombay, 1980. MR 659851
Bibliographic Information
- Jesse Ira Deutsch
- Affiliation: Mathematics Department, University of Botswana, Private Bag 0022, Gaborone, Botswana
- Email: deutschj_1729@yahoo.com
- Received by editor(s): January 6, 2000
- Received by editor(s) in revised form: September 7, 2000
- Published electronically: December 21, 2001
- © Copyright 2001 American Mathematical Society
- Journal: Math. Comp. 71 (2002), 1271-1280
- MSC (2000): Primary 11-04, 11Y35; Secondary 32-04
- DOI: https://doi.org/10.1090/S0025-5718-01-01403-X
- MathSciNet review: 1898756