On the least prime primitive root modulo a prime
HTML articles powered by AMS MathViewer
- by A. Paszkiewicz and A. Schinzel;
- Math. Comp. 71 (2002), 1307-1321
- DOI: https://doi.org/10.1090/S0025-5718-02-01370-4
- Published electronically: January 17, 2002
- PDF | Request permission
Abstract:
We derive a conditional formula for the natural density $E(q)$ of prime numbers $p$ having its least prime primitive root equal to $q$, and compare theoretical results with the numerical evidence.References
- C. J. Everett Jr., Annihilator ideals and representation iteration for abstract rings, Duke Math. J. 5 (1939), 623–627. MR 13
- Eric Bach, Comments on search procedures for primitive roots, Math. Comp. 66 (1997), no. 220, 1719–1727. MR 1433261, DOI 10.1090/S0025-5718-97-00890-9
- Leonardo Cangelmi and Francesco Pappalardi, On the $r$-rank Artin conjecture. II, J. Number Theory 75 (1999), no. 1, 120–132. MR 1677559, DOI 10.1006/jnth.1998.2319
- P. D. T. A. Elliott and Leo Murata, On the average of the least primitive root modulo $p$, J. London Math. Soc. (2) 56 (1997), no. 3, 435–454. MR 1610435, DOI 10.1112/S0024610797005310
- K. R. Matthews, A generalisation of Artin’s conjecture for primitive roots, Acta Arith. 29 (1976), no. 2, 113–146. MR 396448, DOI 10.4064/aa-29-2-113-146
- Władysław Narkiewicz, Elementary and analytic theory of algebraic numbers, 2nd ed., Springer-Verlag, Berlin; PWN—Polish Scientific Publishers, Warsaw, 1990. MR 1055830
- Francesco Pappalardi, On minimal sets of generators for primitive roots, Canad. Math. Bull. 38 (1995), no. 4, 465–468. MR 1360597, DOI 10.4153/CMB-1995-068-4
- Francesco Pappalardi, On the $r$-rank Artin conjecture, Math. Comp. 66 (1997), no. 218, 853–868. MR 1377664, DOI 10.1090/S0025-5718-97-00805-3
- John W. Wrench Jr., Evaluation of Artin’s constant and the twin-prime constant, Math. Comp. 15 (1961), 396–398. MR 124305, DOI 10.1090/S0025-5718-1961-0124305-0
Bibliographic Information
- A. Paszkiewicz
- Affiliation: Warsaw University of Technology, Division of Telecom Fundamentals, Nowowiejska 15/19, 00-665 Warsaw, Poland
- Email: anpa@tele.pw.edu.pl
- A. Schinzel
- Affiliation: Institute of Mathematics, Polish Academy of Sciences, ul. Śniadeckich 8, 00-950 Warsaw, Poland
- Email: schinzel@plearn.edu.pl
- Received by editor(s): April 27, 1999
- Received by editor(s) in revised form: September 7, 2000
- Published electronically: January 17, 2002
- © Copyright 2002 American Mathematical Society
- Journal: Math. Comp. 71 (2002), 1307-1321
- MSC (2000): Primary 11Y16; Secondary 11A07, 11M26
- DOI: https://doi.org/10.1090/S0025-5718-02-01370-4
- MathSciNet review: 1898759