Avoiding the order reduction of Runge-Kutta methods for linear initial boundary value problems
HTML articles powered by AMS MathViewer
- by M. P. Calvo and C. Palencia;
- Math. Comp. 71 (2002), 1529-1543
- DOI: https://doi.org/10.1090/S0025-5718-01-01362-X
- Published electronically: November 19, 2001
- PDF | Request permission
Abstract:
A new strategy to avoid the order reduction of Runge-Kutta methods when integrating linear, autonomous, nonhomogeneous initial boundary value problems is presented. The solution is decomposed into two parts. One of them can be computed directly in terms of the data and the other satisfies an initial value problem without any order reduction. A numerical illustration is given. This idea applies to practical problems, where spatial discretization is also required, leading to the full order both in space and time.References
- Saul Abarbanel, David Gottlieb, and Mark H. Carpenter, On the removal of boundary errors caused by Runge-Kutta integration of nonlinear partial differential equations, SIAM J. Sci. Comput. 17 (1996), no. 3, 777–782. MR 1384267, DOI 10.1137/S1064827595282520
- I. Alonso-Mallo, Rational methods with optimal order of convergence for partial differential equations, Appl. Numer. Math. 35 (2000) 265–292.
- Isaías Alonso-Mallo, Explicit single step methods with optimal order of convergence for partial differential equations, Appl. Numer. Math. 31 (1999), no. 2, 117–131. MR 1708954, DOI 10.1016/S0168-9274(98)00132-9
- I. Alonso-Mallo and C. Palencia, On the convolution operators arising in the study of abstract initial-boundary value problems, Proc. Roy. Soc. Edinburgh Sect. A 126 (1996), no. 3, 515–539. MR 1396277, DOI 10.1017/S0308210500022897
- I. Alonso-Mallo & C. Palencia, Optimal orders of convergence in Runge-Kutta methods for linear, non-homogeneous PDEs with singular source terms, preprint.
- N. Yu. Bakaev, Estimates for the stability of a general discretization method, Dokl. Akad. Nauk SSSR 309 (1989), no. 1, 11–15 (Russian); English transl., Soviet Math. Dokl. 40 (1990), no. 3, 447–451. MR 1035844
- Hidegorô Nakano, Über Abelsche Ringe von Projektionsoperatoren, Proc. Phys.-Math. Soc. Japan (3) 21 (1939), 357–375 (German). MR 94
- Nikolai Yu. Bakaev, On variable stepsize Runge-Kutta approximations of a Cauchy problem for the evolution equation, BIT 38 (1998), no. 3, 462–485. MR 1652765, DOI 10.1007/BF02510254
- K. Brebbiya, Zh. Telles, and L. Vroubel, Metody granichnykh èlementov, “Mir”, Moscow, 1987 (Russian). Translated from the English by L. G. Korneĭchuk; Translation edited and with a preface by È. I. Grigolyuk. MR 934922
- Philip Brenner, Michel Crouzeix, and Vidar Thomée, Single-step methods for inhomogeneous linear differential equations in Banach space, RAIRO Anal. Numér. 16 (1982), no. 1, 5–26 (English, with French summary). MR 648742
- Philip Brenner and Vidar Thomée, On rational approximations of semigroups, SIAM J. Numer. Anal. 16 (1979), no. 4, 683–694. MR 537280, DOI 10.1137/0716051
- Mark H. Carpenter, David Gottlieb, Saul Abarbanel, and Wai Sun Don, The theoretical accuracy of Runge-Kutta time discretizations for the initial-boundary value problem: a study of the boundary error, SIAM J. Sci. Comput. 16 (1995), no. 6, 1241–1252. MR 1355491, DOI 10.1137/0916072
- M. Crouzeix & P. A. Raviart, Méthodes de Runge-Kutta, Unpublished Lecture Notes, Université de Rennes (1980).
- M. Crouzeix, S. Larsson, S. Piskarëv, and V. Thomée, The stability of rational approximations of analytic semigroups, BIT 33 (1993), no. 1, 74–84. MR 1326004, DOI 10.1007/BF01990345
- J. L. M. van Dorsselaer, J. F. B. M. Kraaijevanger, and M. N. Spijker, Linear stability analysis in the numerical solution of initial value problems, Acta numerica, 1993, Acta Numer., Cambridge Univ. Press, Cambridge, 1993, pp. 199–237. MR 1224683, DOI 10.1017/S0962492900002361
- E. Hairer and G. Wanner, Solving ordinary differential equations. II, 2nd ed., Springer Series in Computational Mathematics, vol. 14, Springer-Verlag, Berlin, 1996. Stiff and differential-algebraic problems. MR 1439506, DOI 10.1007/978-3-642-05221-7
- Kazufumi Ito and Franz Kappel, The Trotter-Kato theorem and approximation of PDEs, Math. Comp. 67 (1998), no. 221, 21–44. MR 1443120, DOI 10.1090/S0025-5718-98-00915-6
- Claes Johnson, Numerical solution of partial differential equations by the finite element method, Cambridge University Press, Cambridge, 1987. MR 925005
- Stephen L. Keeling, Galerkin/Runge-Kutta discretizations for parabolic equations with time-dependent coefficients, Math. Comp. 52 (1989), no. 186, 561–586. MR 958873, DOI 10.1090/S0025-5718-1989-0958873-3
- Stephen L. Keeling, Galerkin/Runge-Kutta discretizations for semilinear parabolic equations, SIAM J. Numer. Anal. 27 (1990), no. 2, 394–418. MR 1043612, DOI 10.1137/0727024
- Christian Lubich and Alexander Ostermann, Interior estimates for time discretizations of parabolic equations, Appl. Numer. Math. 18 (1995), no. 1-3, 241–251. Seventh Conference on the Numerical Treatment of Differential Equations (Halle, 1994). MR 1357920, DOI 10.1016/0168-9274(95)00056-Z
- Andrew Ronald Mitchell and D. F. Griffiths, The finite difference method in partial differential equations, A Wiley-Interscience Publication, John Wiley & Sons, Ltd., Chichester, 1980. MR 562915
- K. W. Morton and D. F. Mayers, Numerical solution of partial differential equations, Cambridge University Press, Cambridge, 1994. An introduction. MR 1312611
- A. Ostermann and M. Roche, Runge-Kutta methods for partial differential equations and fractional orders of convergence, Math. Comp. 59 (1992), no. 200, 403–420. MR 1142285, DOI 10.1090/S0025-5718-1992-1142285-6
- C. Palencia, A stability result for sectorial operators in Banach spaces, SIAM J. Numer. Anal. 30 (1993), no. 5, 1373–1384. MR 1239826, DOI 10.1137/0730071
- C. Palencia, On the stability of variable stepsize rational approximations of holomorphic semigroups, Math. Comp. 62 (1994), no. 205, 93–103. MR 1201070, DOI 10.1090/S0025-5718-1994-1201070-9
- C. Palencia, Maximum norm analysis of completely discrete finite element methods for parabolic problems, SIAM J. Numer. Anal. 33 (1996), no. 4, 1654–1668. MR 1403564, DOI 10.1137/S0036142993259779
- Xin Hua Ji and De Quan Chen, Application of expansion of Poisson kernel to the Dirichlet problem for a degenerated elliptic equation in the extended space, Geometry, analysis and mechanics, World Sci. Publ., River Edge, NJ, 1994, pp. 219–226. MR 1323205
- C. Palencia and J. M. Sanz-Serna, An extension of the Lax-Richtmyer theory, Numer. Math. 44 (1984), no. 2, 279–283. MR 753959, DOI 10.1007/BF01410111
- D. Pathria, The correct formulation of intermediate boundary conditions for Runge-Kutta time integration of initial-boundary value problems, SIAM J. Sci. Comput. 18 (1997), no. 5, 1255–1266. MR 1465656, DOI 10.1137/S1064827594273948
- A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. MR 710486, DOI 10.1007/978-1-4612-5561-1
- J. M. Sanz-Serna, J. G. Verwer, and W. H. Hundsdorfer, Convergence and order reduction of Runge-Kutta schemes applied to evolutionary problems in partial differential equations, Numer. Math. 50 (1987), no. 4, 405–418. MR 875165, DOI 10.1007/BF01396661
- A. H. Schatz and L. B. Wahlbin, On the quasi-optimality in $L_{\infty }$ of the $\dot H^{1}$-projection into finite element spaces, Math. Comp. 38 (1982), no. 157, 1–22. MR 637283, DOI 10.1090/S0025-5718-1982-0637283-6
- A. H. Schatz, V. Thomée, and L. B. Wahlbin, Stability, analyticity, and almost best approximation in maximum norm for parabolic finite element equations, Comm. Pure Appl. Math. 51 (1998), no. 11-12, 1349–1385. MR 1639143, DOI 10.1002/(SICI)1097-0312(199811/12)51:11/12<1349::AID-CPA5>3.3.CO;2-T
- Béla Sz.-Nagy and Ciprian Foiaş, Harmonic analysis of operators on Hilbert space, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York Akadémiai Kiadó, Budapest, 1970. Translated from the French and revised. MR 275190
- Vidar Thomée, Galerkin finite element methods for parabolic problems, Springer Series in Computational Mathematics, vol. 25, Springer-Verlag, Berlin, 1997. MR 1479170, DOI 10.1007/978-3-662-03359-3
Bibliographic Information
- M. P. Calvo
- Affiliation: Departamento de Matemática Aplicada y Computación, Universidad de Valladolid, Valladolid, Spain
- Email: maripaz@mac.cie.uva.es
- C. Palencia
- Affiliation: Departamento de Matemática Aplicada y Computación, Universidad de Valladolid, Valladolid, Spain
- Email: palencia@mac.cie.uva.es
- Received by editor(s): January 14, 2000
- Received by editor(s) in revised form: November 30, 2000
- Published electronically: November 19, 2001
- Additional Notes: This research has been supported by DGICYT under project PB95-705 and by Junta de Castilla y León under project VA36/98.
- © Copyright 2001 American Mathematical Society
- Journal: Math. Comp. 71 (2002), 1529-1543
- MSC (2000): Primary 65M12, 65M20
- DOI: https://doi.org/10.1090/S0025-5718-01-01362-X
- MathSciNet review: 1933043