Some numerical computations concerning spinor zeta functions in genus $\boldsymbol {2}$ at the central point
HTML articles powered by AMS MathViewer
- by Winfried Kohnen and Michael Kuß;
- Math. Comp. 71 (2002), 1597-1607
- DOI: https://doi.org/10.1090/S0025-5718-01-01399-0
- Published electronically: December 5, 2001
- PDF | Request permission
Abstract:
We numerically compute the central critical values of odd quadratic character twists with respect to some small discriminants $D$ of spinor zeta functions attached to Seigel–Hecke eigenforms $F$ of genus 2 in the first few cases where $F$ does not belong to the Maass space. As a result, in the cases considered we can numerically confirm a conjecture of Böcherer, according to which these central critical values should be proportional to the squares of certain finite sums of Fourier coefficients of $F$.References
- Milton Abramowitz and Irene A. Stegun (eds.), Handbook of mathematical functions with formulas, graphs, and mathematical tables, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York; John Wiley & Sons, Inc., New York, 1984. Reprint of the 1972 edition; Selected Government Publications. MR 757537
- A. N. Andrianov, Euler products that correspond to Siegel’s modular forms of genus $2$, Uspehi Mat. Nauk 29 (1974), no. 3(177), 43–110 (Russian). MR 432552
- S. Böcherer: Bemerkungen über die Dirichletreihen von Koecher und Maass. Math. Gottingensis, Schriftenr. d. Sonderforschungsbereichs Geom. Anal. 68, (1986).
- Siegfried Böcherer and Rainer Schulze-Pillot, The Dirichlet series of Koecher and Maass and modular forms of weight $\frac 32$, Math. Z. 209 (1992), no. 2, 273–287. MR 1147818, DOI 10.1007/BF02570834
- Martin Eichler and Don Zagier, The theory of Jacobi forms, Progress in Mathematics, vol. 55, Birkhäuser Boston, Inc., Boston, MA, 1985. MR 781735, DOI 10.1007/978-1-4684-9162-3
- Winfried Kohnen, On characteristic twists of certain Dirichlet series, Mem. Fac. Sci. Kyushu Univ. Ser. A 47 (1993), no. 1, 103–117. MR 1222357, DOI 10.2206/kyushumfs.47.103
- W. Kohnen, A. Krieg, and J. Sengupta, Characteristic twists of a Dirichlet series for Siegel cusp forms, Manuscripta Math. 87 (1995), no. 4, 489–499. MR 1344603, DOI 10.1007/BF02570489
- W. Kohnen and N.-P. Skoruppa, A certain Dirichlet series attached to Siegel modular forms of degree two, Invent. Math. 95 (1989), no. 3, 541–558. MR 979364, DOI 10.1007/BF01393889
- M. Kuß: Die getwistete Spinor Zeta Funktion und die Böcherer Vermutung. Dissertation. (2000)
- A. F. Lavrik, Functional equations of the Dirichlet functions, Dokl. Akad. Nauk SSSR 171 (1966), 278–280 (Russian). MR 204625
- Dunham Jackson, A class of orthogonal functions on plane curves, Ann. of Math. (2) 40 (1939), 521–532. MR 80, DOI 10.2307/1968936
- Nils-Peter Skoruppa, Computations of Siegel modular forms of genus two, Math. Comp. 58 (1992), no. 197, 381–398. MR 1106982, DOI 10.1090/S0025-5718-1992-1106982-0
- J.-L. Waldspurger, Sur les coefficients de Fourier des formes modulaires de poids demi-entier, J. Math. Pures Appl. (9) 60 (1981), no. 4, 375–484 (French). MR 646366
- R. Weissauer: The Ramanujan conjecture for genus two Siegel modular forms (an application of the trace formula). Preprint, Mannheim (1993)
Bibliographic Information
- Winfried Kohnen
- Affiliation: Universität Heidelberg, Mathematisches Institut, Im Neuenheimer Feld 288, D-69120 Heidelberg, Germany
- Email: winfried@mathi.uni-heidelberg.de
- Michael Kuß
- Affiliation: Universität Heidelberg, Mathematisches Institut, Im Neuenheimer Feld 288, D-69120 Heidelberg, Germany
- Email: michael.kuss@urz.uni-heidelberg.de
- Received by editor(s): October 20, 1999
- Received by editor(s) in revised form: January 3, 2001
- Published electronically: December 5, 2001
- © Copyright 2001 American Mathematical Society
- Journal: Math. Comp. 71 (2002), 1597-1607
- MSC (2000): Primary 11F46
- DOI: https://doi.org/10.1090/S0025-5718-01-01399-0
- MathSciNet review: 1933046