A one-parameter quadratic-base version of the Baillie-PSW probable prime test
HTML articles powered by AMS MathViewer
- by Zhenxiang Zhang;
- Math. Comp. 71 (2002), 1699-1734
- DOI: https://doi.org/10.1090/S0025-5718-02-01424-2
- Published electronically: May 16, 2002
- PDF | Request permission
Abstract:
The well-known Baillie-PSW probable prime test is a combination of a Rabin-Miller test and a “true” (i.e., with $(D/n)=-1$) Lucas test. Arnault mentioned in a recent paper that no precise result is known about its probability of error. Grantham recently provided a probable prime test (RQFT) with probability of error less than 1/7710, and pointed out that the lack of counter-examples to the Baillie-PSW test indicates that the true probability of error may be much lower.
In this paper we first define pseudoprimes and strong pseudoprimes to quadratic bases with one parameter: $T_u=T \mod (T^2-uT+1)$, and define the base-counting functions: \begin{equation*} \mathrm {B}(n) = \#\{u: 0\leq u<n,\; \text {$n$ is a $\operatorname {psp}(T_u)$}\} \end{equation*} and \begin{equation*} \mathrm {SB}(n) = \#\{u: 0\leq u<n,\; \text {$n$ is an $\operatorname {spsp}(T_u)$}\}. \end{equation*} Then we give explicit formulas to compute B$(n)$ and SB$(n)$, and prove that, for odd composites $n$, \begin{equation*}\text { B}(n)<n/2\; \text { and$\;$ SB}(n)<n/8, \end{equation*} and point out that these are best possible. Finally, based on one-parameter quadratic-base pseudoprimes, we provide a probable prime test, called the One-Parameter Quadratic-Base Test (OPQBT), which passed by all primes $\geq 5$ and passed by an odd composite $n=p_1^{r_1}p_2^{r_2}\cdots p_s^{r_s}\;(p_1<p_2<\cdots <p_s$ odd primes) with probability of error $\tau (n)$. We give explicit formulas to compute $\tau (n)$, and prove that \begin{equation*} \tau (n)< \begin {cases} 1/n^{4/3}, & \text {for $n$ nonsquare free with } s=1; \\ 1/n^{2/3}, & \text {for $n$ square free with } s=2; \\ 1/n^{2/7}, & \text {for $n$ square free with } s=3; \\ \frac {1}{8^{s-4}\cdot 166(p_1+1)}, & \text {for $n$ square free with $s$ even} \geq 4; \\ \frac {1}{16^{s-5}\cdot 119726}, & \text {for $n$ square free with $s$ odd} \geq 5;\\ \frac {1}{4^s}\prod _{i=1}^{s}\frac {1}{p_i^{2(r_i-1)}}, & \text {otherwise, i.e., for $n$ nonsquare free with } s\geq 2. \end{cases} \end{equation*} The running time of the OPQBT is asymptotically 4 times that of a Rabin-Miller test for worst cases, but twice that of a Rabin-Miller test for most composites. We point out that the OPQBT has clear finite group (field) structure and nice symmetry, and is indeed a more general and strict version of the Baillie-PSW test. Comparisons with Gantham’s RQFT are given.
References
- W. R. Alford, Andrew Granville, and Carl Pomerance, There are infinitely many Carmichael numbers, Ann. of Math. (2) 139 (1994), no. 3, 703–722. MR 1283874, DOI 10.2307/2118576
- W. R. Alford, Andrew Granville, and Carl Pomerance, On the difficulty of finding reliable witnesses, Algorithmic number theory (Ithaca, NY, 1994) Lecture Notes in Comput. Sci., vol. 877, Springer, Berlin, 1994, pp. 1–16. MR 1322705, DOI 10.1007/3-540-58691-1_{3}6
- A. Z. Grinshpan and E. B. Saff, Estimating the argument of some analytic functions, J. Approx. Theory 88 (1997), no. 1, 135–138. MR 1426463, DOI 10.1006/jath.1996.3084
- Yel Chiang Wu, Corrections to: “$H^{3}(G,\,A)$ and obstructions of group extensions” [J. Pure Appl. Algebra 12 (1978), no. 1, 93–100; MR 57 #16387], J. Pure Appl. Algebra 20 (1981), no. 1, 103–105. MR 596157, DOI 10.1016/0022-4049(81)90052-9
- David M. Bressoud, Factorization and primality testing, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1989. MR 1016812, DOI 10.1007/978-1-4612-4544-5
- Henri Cohen, A course in computational algebraic number theory, Graduate Texts in Mathematics, vol. 138, Springer-Verlag, Berlin, 1993. MR 1228206, DOI 10.1007/978-3-662-02945-9
- H. Cohen and A. K. Lenstra, Implementation of a new primality test, Math. Comp. 48 (1987), no. 177, 103–121, S1–S4. MR 866102, DOI 10.1090/S0025-5718-1987-0866102-2
- H. Cohen and H. W. Lenstra Jr., Primality testing and Jacobi sums, Math. Comp. 42 (1984), no. 165, 297–330. MR 726006, DOI 10.1090/S0025-5718-1984-0726006-X
- Jon Grantham, A probable prime test with high confidence, J. Number Theory 72 (1998), no. 1, 32–47. MR 1643284, DOI 10.1006/jnth.1998.2247
- Jon Grantham, Frobenius pseudoprimes, Math. Comp. 70 (2001), no. 234, 873–891. MR 1680879, DOI 10.1090/S0025-5718-00-01197-2
- Richard K. Guy, Unsolved problems in number theory, 2nd ed., Problem Books in Mathematics, Springer-Verlag, New York, 1994. Unsolved Problems in Intuitive Mathematics, I. MR 1299330, DOI 10.1007/978-1-4899-3585-4
- Loo Keng Hua, Introduction to number theory, Springer-Verlag, Berlin-New York, 1982. Translated from the Chinese by Peter Shiu. MR 665428
- Donald E. Knuth, The art of computer programming. Vol. 2, 2nd ed., Addison-Wesley Series in Computer Science and Information Processing, Addison-Wesley Publishing Co., Reading, MA, 1981. Seminumerical algorithms. MR 633878
- H. W. Lenstra Jr., Primality testing, Computational methods in number theory, Part I, Math. Centre Tracts, vol. 154, Math. Centrum, Amsterdam, 1982, pp. 55–77. MR 700258
- Leo F. Epstein, A function related to the series for $e^{e^x}$, J. Math. Phys. Mass. Inst. Tech. 18 (1939), 153–173. MR 58, DOI 10.1002/sapm1939181153
- Louis Monier, Evaluation and comparison of two efficient probabilistic primality testing algorithms, Theoret. Comput. Sci. 12 (1980), no. 1, 97–108. MR 582244, DOI 10.1016/0304-3975(80)90007-9
- R. G. E. Pinch, The Carmichael numbers up to $10^{15}$, Math. Comp. 61 (1993), no. 203, 381–391. MR 1202611, DOI 10.1090/S0025-5718-1993-1202611-7
- C.Pomerance, Are there counter-examples to the Baillie-PSW primality test?, Dopo Le Parole aangeboden aan Dr. A.K. Lenstra (H.W.Lenstra, Jr., J.K.Lenstraand P.Van Emde Boas, eds.), Amsterdam,1984.
- Carl Pomerance, J. L. Selfridge, and Samuel S. Wagstaff Jr., The pseudoprimes to $25\cdot 10^{9}$, Math. Comp. 35 (1980), no. 151, 1003–1026. MR 572872, DOI 10.1090/S0025-5718-1980-0572872-7
- Paul H. Zipkin, Bounds for aggregating nodes in network problems, Math. Programming 19 (1980), no. 2, 155–177. MR 583276, DOI 10.1007/BF01581638
- Kenneth H. Rosen, Elementary number theory and its applications, Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1984. MR 755333
- H. C. Williams, On numbers analogous to the Carmichael numbers, Canad. Math. Bull. 20 (1977), no. 1, 133–143. MR 447099, DOI 10.4153/CMB-1977-025-9
- Zhenxiang Zhang, Finding strong pseudoprimes to several bases, Math. Comp. 70 (2001), no. 234, 863–872. MR 1697654, DOI 10.1090/S0025-5718-00-01215-1
- Zhenxiang Zhang, Using Lucas sequences to factor large integers near group orders, Fibonacci Quart. 39 (2001), no. 3, 228–237. MR 1840030
Bibliographic Information
- Zhenxiang Zhang
- Affiliation: Department of Mathematics, Anhui Normal University, 241000 Wuhu, Anhui, P. R. China
- Email: zhangzhx@mail.ahwhptt.net.cn
- Received by editor(s): August 14, 2000
- Published electronically: May 16, 2002
- Additional Notes: Supported by the China State Educational Commission Science Foundation, the NSF of China Grant 10071001, the SF of Anhui Province Grant 01046103, and the SF of the Education Department of Anhui Province Grant 2002KJ131
- © Copyright 2002 American Mathematical Society
- Journal: Math. Comp. 71 (2002), 1699-1734
- MSC (2000): Primary 11Y11; Secondary 11A51, 11R11
- DOI: https://doi.org/10.1090/S0025-5718-02-01424-2
- MathSciNet review: 1933051