Fully adaptive multiresolution finite volume schemes for conservation laws
HTML articles powered by AMS MathViewer
- by Albert Cohen, Sidi Mahmoud Kaber, Siegfried Müller and Marie Postel;
- Math. Comp. 72 (2003), 183-225
- DOI: https://doi.org/10.1090/S0025-5718-01-01391-6
- Published electronically: December 5, 2001
- PDF | Request permission
Abstract:
The use of multiresolution decompositions in the context of finite volume schemes for conservation laws was first proposed by A. Harten for the purpose of accelerating the evaluation of numerical fluxes through an adaptive computation. In this approach the solution is still represented at each time step on the finest grid, resulting in an inherent limitation of the potential gain in memory space and computational time. The present paper is concerned with the development and the numerical analysis of fully adaptive multiresolution schemes, in which the solution is represented and computed in a dynamically evolved adaptive grid. A crucial problem is then the accurate computation of the flux without the full knowledge of fine grid cell averages. Several solutions to this problem are proposed, analyzed, and compared in terms of accuracy and complexity.References
- Abgrall, R. (1997) Multiresolution analysis on unstructured meshes: applications to CFD, in Chetverushkin and al. eds. Experimentation, modeling and computation in flow, turbulence and combustion, vol.2, John Wiley & Sons.
- Arandiga, F. and R. Donat (1999) A class of nonlinear multiscale decomposition, to appear in Numerical Algorithms.
- Berger, M. J. and P. Collela (1989) Local adaptive mesh refinement for shock hydrodynamics, Journal of Computational Physics, 82, pp 64-84.
- I. Babuška and B. Q. Guo, The $h$-$p$ version of the finite element method for domains with curved boundaries, SIAM J. Numer. Anal. 25 (1988), no. 4, 837–861. MR 954788, DOI 10.1137/0725048
- Barna L. Bihari and Ami Harten, Multiresolution schemes for the numerical solution of $2$-D conservation laws. I, SIAM J. Sci. Comput. 18 (1997), no. 2, 315–354. MR 1433783, DOI 10.1137/S1064827594278848
- J. M. Carnicer, W. Dahmen, and J. M. Peña, Local decomposition of refinable spaces and wavelets, Appl. Comput. Harmon. Anal. 3 (1996), no. 2, 127–153. MR 1385049, DOI 10.1006/acha.1996.0012
- Alfred S. Cavaretta, Wolfgang Dahmen, and Charles A. Micchelli, Stationary subdivision, Mem. Amer. Math. Soc. 93 (1991), no. 453, vi+186. MR 1079033, DOI 10.1090/memo/0453
- Chiavassa, G. and R. Donat (1999) Numerical experiments with point value multiresolution for 2d compressible flows, Technical Report GrAN-99-4, University of Valencia.
- Bernardo Cockburn, Frédéric Coquel, and Philippe LeFloch, An error estimate for finite volume methods for multidimensional conservation laws, Math. Comp. 63 (1994), no. 207, 77–103. MR 1240657, DOI 10.1090/S0025-5718-1994-1240657-4
- Cohen, A. (2000) Wavelet methods in numerical analysis, Handbook of Numerical Analysis, vol. VII, P.G. Ciarlet and J.L. Lions, eds., North-Holland, Amsterdam, pp. 417–711.
- Cohen, A., W. Dahmen and R. DeVore (2001) Adaptive wavelet methods for elliptic operator equations: convergence rates, Math. Comp. 70, 27–75.
- A. Cohen, Ingrid Daubechies, and J.-C. Feauveau, Biorthogonal bases of compactly supported wavelets, Comm. Pure Appl. Math. 45 (1992), no. 5, 485–560. MR 1162365, DOI 10.1002/cpa.3160450502
- Albert Cohen, Nira Dyn, Sidi Mahmoud Kaber, and Marie Postel, Multiresolution schemes on triangles for scalar conservation laws, J. Comput. Phys. 161 (2000), no. 1, 264–286. MR 1762081, DOI 10.1006/jcph.2000.6503
- Cohen, A., S.M. Kaber and M. Postel (1999) Multiresolution analysis on triangles: application to conservation laws, in Finite volumes for complex applications II, R. Vielsmeier, F. Benkhaldoun and D. Hänel eds., Hermes, Paris.
- Wolfgang Dahmen, Wavelet and multiscale methods for operator equations, Acta numerica, 1997, Acta Numer., vol. 6, Cambridge Univ. Press, Cambridge, 1997, pp. 55–228. MR 1489256, DOI 10.1017/S0962492900002713
- Dahmen, W., B. Gottschlich-Müller and S. Müller (2000) Multiresolution Schemes for Conservation Laws, Numerische Mathematik DOI 10.1007/s00210000222
- Ingrid Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. MR 1162107, DOI 10.1137/1.9781611970104
- Ronald A. DeVore, Nonlinear approximation, Acta numerica, 1998, Acta Numer., vol. 7, Cambridge Univ. Press, Cambridge, 1998, pp. 51–150. MR 1689432, DOI 10.1017/S0962492900002816
- Dyn, N. (1992) Subdivision algorithms in computer-aided geometric design, in: Advances in Numerical Analysis II, W.A. Light ed., Clarendon Press, Oxford.
- Birgit Gottschlich-Müller and Siegfried Müller, Adaptive finite volume schemes for conservation laws based on local multiresolution techniques, Hyperbolic problems: theory, numerics, applications, Vol. I (Zürich, 1998) Internat. Ser. Numer. Math., vol. 129, Birkhäuser, Basel, 1999, pp. 385–394. MR 1717209
- Ami Harten, Adaptive multiresolution schemes for shock computations, J. Comput. Phys. 115 (1994), no. 2, 319–338. MR 1304579, DOI 10.1006/jcph.1994.1199
- Ami Harten, Multiresolution algorithms for the numerical solution of hyperbolic conservation laws, Comm. Pure Appl. Math. 48 (1995), no. 12, 1305–1342. MR 1369391, DOI 10.1002/cpa.3160481201
- Ami Harten, Björn Engquist, Stanley Osher, and Sukumar R. Chakravarthy, Uniformly high-order accurate essentially nonoscillatory schemes. III, J. Comput. Phys. 71 (1987), no. 2, 231–303. MR 897244, DOI 10.1016/0021-9991(87)90031-3
- S. Jaffard, Pointwise smoothness, two-microlocalization and wavelet coefficients, Publ. Mat. 35 (1991), no. 1, 155–168. Conference on Mathematical Analysis (El Escorial, 1989). MR 1103613, DOI 10.5565/PUBLMAT_{3}5191_{0}6
- Dietmar Kröner, Numerical schemes for conservation laws, Wiley-Teubner Series Advances in Numerical Mathematics, John Wiley & Sons, Ltd., Chichester; B. G. Teubner, Stuttgart, 1997. MR 1437144
- Randall J. LeVeque, Numerical methods for conservation laws, 2nd ed., Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1992. MR 1153252, DOI 10.1007/978-3-0348-8629-1
- Bradley J. Lucier, A moving mesh numerical method for hyperbolic conservation laws, Math. Comp. 46 (1986), no. 173, 59–69. MR 815831, DOI 10.1090/S0025-5718-1986-0815831-4
- Erich Rothe, Topological proofs of uniqueness theorems in the theory of differential and integral equations, Bull. Amer. Math. Soc. 45 (1939), 606–613. MR 93, DOI 10.1090/S0002-9904-1939-07048-1
- Richard Sanders, On convergence of monotone finite difference schemes with variable spatial differencing, Math. Comp. 40 (1983), no. 161, 91–106. MR 679435, DOI 10.1090/S0025-5718-1983-0679435-6
- Sjögreen, B. (1995) Numerical experiments with the multiresolution scheme for the compressible Euler equations, J. Comp. Phys., 117, 251-261.
- Schröder-Pander, F. and T. Sonar (1995) Preliminary investigations on multiresolution analysis on unstructured grids, DLR Report IB 223–95 A 36, 1995, DLR Göttingen.
- L.J. Durlofsky, B. Engquist, and S. Osher (1992) Triangle based adaptive stencils for the solution of hyperbolic conservation laws. J. Comp. Phys., 98, 64–73.
- Edwige Godlewski and Pierre-Arnaud Raviart, Numerical approximation of hyperbolic systems of conservation laws, Applied Mathematical Sciences, vol. 118, Springer-Verlag, New York, 1996. MR 1410987, DOI 10.1007/978-1-4612-0713-9
- Sidi Mahmoud Kaber and Marie Postel, Finite volume schemes on triangles coupled with multiresolution analysis, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), no. 9, 817–822 (English, with English and French summaries). MR 1694058, DOI 10.1016/S0764-4442(99)80278-X
- A. Voss and S. Müller (1999) A manual for the template class library igpm_t_lib. Technical Report 197, IGPM, RWTH Aachen.
- J. Ballmann, F. Bramkamp, and S. Müller (2000) Development of a flow solver employing local adaptation based on multiscale analysis on B-spline grids. In Proceedings of 8th Annual Conf. of the CFD Society of Canada, June, 11 to 13, 2000 Montreal.
Bibliographic Information
- Albert Cohen
- Affiliation: Laboratoire d’Analyse Numérique, Université Pierre et Marie Curie, BC 187, 75252 Paris cedex 05, France
- MR Author ID: 308419
- Email: cohen@ann.jussieu.fr
- Sidi Mahmoud Kaber
- Affiliation: Laboratoire d’Analyse Numérique, Université Pierre et Marie Curie, BC 187, 75252 Paris cedex 05, France
- Email: kaber@ann.jussieu.fr
- Siegfried Müller
- Affiliation: Institut für Geometrie und Praktische Mathematik, RWTH, Templergraben 55, D-52056 Aachen, Germany
- Email: mueller@igpm.rwth-aachen.de
- Marie Postel
- Affiliation: Laboratoire d’Analyse Numérique, Université Pierre et Marie Curie, BC 187, 75252 Paris cedex 05, France
- Email: postel@ann.jussieu.fr
- Received by editor(s): May 30, 2000
- Received by editor(s) in revised form: February 6, 2001
- Published electronically: December 5, 2001
- Additional Notes: The work of S. Müller has been supported by the EU–TMR network “Wavelets in Numerical Simulations”.
- © Copyright 2001 American Mathematical Society
- Journal: Math. Comp. 72 (2003), 183-225
- MSC (2000): Primary 41A58, 65M50, 65M12
- DOI: https://doi.org/10.1090/S0025-5718-01-01391-6
- MathSciNet review: 1933818