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CLASS NUMBERS OF REAL CYCLOTOMIC FIELDS
OF PRIME CONDUCTOR

RENÉ SCHOOF

Abstract. The class numbers h+
l of the real cyclotomic fields Q(ζl + ζ−1

l )

are notoriously hard to compute. Indeed, the number h+
l is not known for a

single prime l ≥ 71. In this paper we present a table of the orders of certain
subgroups of the class groups of the real cyclotomic fields Q(ζl + ζ−1

l ) for the
primes l < 10, 000. It is quite likely that these subgroups are in fact equal to
the class groups themselves, but there is at present no hope of proving this
rigorously. In the last section of the paper we argue —on the basis of the
Cohen-Lenstra heuristics— that the probability that our table is actually a
table of class numbers h+

l , is at least 98%.

Introduction

Let l > 2 be a prime number and let ζl denote a primitive l-th root of unity.
The ideal class group Cll of the ring of integers of the cyclotomic field Q(ζl) is a
finite abelian group of order hl, the class number of Q(ζl). The group Cll naturally
splits into two parts; there is a natural exact sequence

0 −→ Cl+l −→ Cll −→ Cl−l −→ 0,

where Cl+l denotes the class group of the ring of integers of the real cyclotomic
field Q(ζl + ζ−1

l ). Its order, the class number of Q(ζl + ζ−1
l ), is denoted by h+

l .
The quotient group Cl−l is rather well understood. Already in the 19th century,
E.E. Kummer [12], [13] computed the orders of the groups Cl−l for l < 100. Nowa-
days it is rather easy to compute these numbers for much larger values of l. See [19]
for the structure of the groups Cl−l and [5] for a study of the extension of Cl−l by
Cl+l . The present paper is concerned with the groups Cl+l .

The groups Cl+l are not well understood, and there is at present no practical
method to compute their orders, not even for relatively small l. Methods that
inspect all ideals of norm less than the classical Minkowski bound become useless
as l grows: for Q(ζl+ζ

−1
l ) the Minkowski bound is ( l−1

2 )!( l−1
2 )−(l−1)/2l(l−3)/4, which

exceeds 1028 when l > 100. Algorithms that proceed by searching for fundamental
units are not very efficient either, because the rank of the unit group of the ring
of integers of Q(ζl + ζ−1

l ) is (l − 3)/2, which is at least 49 when l > 100. This
is too large to be of much use. Using Odlyzko’s discriminant bounds, F. van der
Linden computed in [22] the groups Cl+l for l ≤ 163. For l ≥ 71 his results are only
valid under assumption of the Generalized Riemann Hypothesis for zeta functions
of number fields. Van der Linden’s results are the best known: strictly speaking,
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the largest prime l for which the class number of Q(ζl) is known is l = 67. The
class number of Q(ζ71) is unknown at present. Assuming the Generalized Riemann
Hypothesis improves the situation only marginally: determining the class number
of Q(ζ167) is beyond the scope of any known method.

In view of this sorry state of affairs, we proceed in the following experimental
way. Let Gl denote the Galois group of Q(ζl+ζ

−1
l ) over Q. This is a cyclic group of

order (l− 1)/2. Let Bl denote the quotient of the unit group of the ring of integers
of Q(ζl + ζ−1

l ) by its subgroup of cyclotomic units. It follows from the so-called
class number formula [23] that

#Cl+l = #Bl.

This result can be refined as follows. Both groups Bl and Cl+l are finite Z[Gl]-
modules and hence admit Jordan-Hölder filtrations with simple factors. An appli-
cation of the class number formula for Q(ζl + ζ−1

l ) and its subfields shows that the
submodules of Bl and Cl+l all of whose simple Jordan-Hölder factors have some
fixed order q, have the same number of elements as well.

The simple Jordan-Hölder factors of the ring Z[Gl] are 1-dimensional vector
spaces over the finite residue fields of Z[Gl]. On heuristic grounds one expects that
when l varies, the smaller factors have a higher probability of occurring than the
larger ones. Therefore we computed only the small Jordan-Hölder factors of Bl for
primes l in a certain range. More precisely, our computation gives the following.

Main result. A table of all the simple Jordan-Hölder factors of order less than
80, 000 of all groups Bl for l < 10, 000. Moreover, we give their multiplicities and
hence the order h̃+

l of the largest subgroup of Bl all of whose Jordan-Hölder factors
have order less than 80, 000. The number h̃+

l is also the order of the largest subgroup
C̃l

+

l of Cl+l all of whose Jordan-Hölder factors have order less than 80, 000.

This is a rather extensive calculation. We checked the more than 85 million
simple Jordan-Hölder factors of the rings Z[Gl] with l < 10, 000 that have order
less than 80,000. Both bounds are rather arbitrary. It turned out that only 354
of the factors appear in the Jordan-Hölder filtration of the group Bl for some
field Q(ζl + ζ−1

l ). The largest one has order 1451. For each occurring Jordan-
Hölder factor we computed the multiplicity with which it occurs in Bl. More
precisely, we determined for all l < 10, 000 the Galois module structure of the
largest submodule of Bl all of whose Jordan-Hölder factors have order less than
80, 000. This submodule is not necessarily isomorphic to the Galois module C̃l

+

l ,
but it has the same order h̃+

l .
We can say with certainty that h̃+

l divides h+
l and that either h+

l is equal to h̃+
l

or that h+
l > 80, 000·h̃+

l . But we do not know for sure whether h̃+
l = h+

l for a single
l ≥ 71 (or l ≥ 167 if we assume the Generalized Riemann Hypothesis). Nevertheless,
an informal calculation based on the Cohen-Lenstra heuristics indicates that it is
not at all unlikely that actually h̃+

l = h+
l for all primes l in our range. Proving this

rigorously seems completely out of reach however.
Note that we do not claim to have computed the p-part of h+

l for all primes
p < 80, 000. We show, for instance, that h̃+

167 = 1, but we have not even checked
that h+

167 = 1 is not divisible by 3! Indeed, since the relevant Jordan-Hölder factors
all have order 341, once 3 divides h+

167, then so does 341. The heuristics indicate
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that it is extremely improbable that Cl+167 admits any simple Jordan-Hölder factors
of order as large as 341.

In section 1 we briefly discuss finite Gorenstein rings. Our main examples are
finite group rings. In section 2 we give a description of the Galois modules Bl that
is suitable for actual computation. In section 3 we explain how the calculations
were performed. In section 4 we present the results of the calculations. The “Main
Table” contains the numbers h̃+

l . In section 5 we show that, even if the Galois
modules Bl and Cl+l need not be isomorphic, their Galois cohomology groups are.
For l < 10, 000, they can readily be computed from the data given in section 4.
Finally, in section 6, we present the heuristic arguments that lead to the assertion
that with 98% probability, the Main Table is actually a table of class numbers of
Q(ζl + ζ−1

l ) for l < 10, 000.
Initially computations were performed on Macintoshes at the Universities of Sas-

sari and Trento in Italy. PARI was used to do the multi-precision computations
described in section 3. I thank Stéphane Fermigier, who some years later trans-
lated my Pascal programs into C and ran them on a powerful Connection Machine
in Paris, Larry Washington for several useful remarks, Francesco Pappalardi and
Don Zagier for their help with the estimates in section 6, and Silvio Levy for the
production of Figure 6.1.

1. Finite Gorenstein rings

In this section we discuss some elementary properties of finite Gorenstein rings.
The properties of these rings play a role in the next section.

Let R be a finite commutative ring. For any R-module A, the additive group
A⊥ = HomR(A,R) is an R-module via (λf)(a) = λf(a) = f(λa) for λ ∈ R,
a ∈ A. Similarly, the dual group Adual = HomZ(A,Q/Z) is an R-module via
(λf)(a) = f(λa) for λ ∈ R, a ∈ A.

The ring R is said to be Gorenstein if the R-module Rdual is free of rank 1
over R. For any positive M ∈ Z, the ring Z/MZ is a Gorenstein ring. If R is a
finite Gorenstein ring, and g(X) ∈ R[X ] is a monic polynomial, then R[X ]/(g(X))
is also a finite Gorenstein ring. In particular, for any M > 0 and any finite abelian
group G, the group ring (Z/MZ)[G] is Gorenstein.

The following proposition collects some well-known consequences of the Goren-
stein property.

Proposition 1.1. Let R be a finite Gorenstein ring. Then
(i) For every R-module A, the map

A⊥ = HomR(A,R) −→ HomZ(A,Q/Z) ∼= Adual

defined by f 7→ χ ·f is an isomorphism of R-modules. Here χ : R −→ Q/Z denotes
a generator of the R-module HomZ(R,Q/Z).

(ii) The functor A 7→ A⊥ from the category of finite R-modules to itself is exact.
Moreover, (A⊥)⊥ ∼= A

(iii) The map I 7→ AnnR(I) is an inclusion-reversing bijection from the set of
ideals of R to itself. One has that AnnRAnnR(I) = I for every ideal I. In addition,
AnnR(I + J) = AnnR(I) ∩ AnnR(J) and AnnR(I ∩ J) = AnnR(I) + AnnR(J) for
all ideals I, J of R.
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Proof. Let A be an R-module. The canonical isomorphism

HomR(A,HomZ(R,Q/Z)) ∼= HomZ(A,Q/Z)

and the R-isomorphism R ∼= HomZ(R,Q/Z) given by 1 7→ χ imply (i). Part (ii)
follows from the fact that the functor A 7→ Adual = HomZ(A,Q/Z) from the cate-
gory of finite Z/MZ-modules to itself is exact. The canonical map A→ (Adual)dual

is easily seen to induce an isomorphism of R-modules A ∼= (A⊥)⊥. Since (R/I)⊥ ∼=
AnnR(I), we have that #I·#AnnR(I) = #R. Applying this to AnnR(I) gives that
#I = #AnnRAnnR(I). Therefore the inclusion I ⊂ AnnRAnnR(I) is an equality.
The remaining statements in part (iii) easily follow from this.

This proves the proposition.

For finite group rings R = (Z/MZ)[G] we make Prop.1.1 (i) more explicit.
Let χ : R −→ Z/MZ denote the homomorphism that maps a group ring element∑
σ∈G xσ[σ] to its coefficient x1. Then χ generates the R-module HomZ(R,Z/MZ),

which is naturally isomorphic to Rdual. If f ∈ HomR(A,R) maps a ∈ A to∑
σ∈G xσ[σ], then the homomorphism χ · f : A −→ Z/MZ of Prop.1.1 (i) maps a

to x1.
The following proposition concerns relations between the structures of certain

R-modules and their duals.

Proposition 1.2. Let R be a finite Gorenstein ring. Then we have the following.
(i) Any finite R-module is Jordan-Hölder isomorphic to its dual.
Let I ⊂ R be an ideal.
(ii) (P. Cornacchia) The modules R/I and (R/I)⊥ are isomorphic R-modules if

and only if AnnR(I) is principal.
(iii) If R/I has a Jordan-Hölder filtration of length at most 2, then (R/I)⊥ ∼=

R/I.
(iv) Suppose that there are an ideal J ⊂ R and a surjection g : R/J −→−→ I⊥

with the property that AnnR(J) annihilates R/I. Then J = AnnR(I) and g is an
isomorphism.

Proof. For any finite R-module A and any maximal ideal m of R, the dual of A/mA
is isomorphic to Adual[m] = {a ∈ Adual : λa = 0 for all λ ∈ m}. Therefore A has a
simple Jordan-Hölder factor isomorphic to R/m if and only Adual has. Part (i) now
follows by induction.

(ii) I owe this part to Pietro Cornacchia. Since (R/I)⊥ ∼= AnnR(I), the condition
that AnnR(I) is principal is clearly necessary. Conversely, if AnnR(I) is principal,
it is isomorphic to an R-module of the form R/J for some ideal J ⊂ R. Since I
annihilates AnnR(I), we have that I ⊂ J . This shows that there is a surjection of R-
modules R/I −→ AnnR(I) ∼= (R/I)⊥. Since both sides have the same cardinality,
we have an isomorphism, and (ii) follows.

(iii) If the length of R/I is 1, then I is maximal, so that AnnR(I) is minimal and
hence principal. If the length of R/I is 2, we distinguish two cases. If there is only
one maximal ideal m satisfying I ⊂ m ⊂ R, then any element in AnnR(I)−AnnR(m)
generates AnnR(I), so that AnnR(I) is principal. If there are two distinct maximal
ideals m, m′ containing I, then I = m ∩ m′. Denoting by α and α′ generators of
AnnR(m) and AnnR(m′) respectively, we have by Prop.1.1 (iii) that AnnR(I) =
(α, α′). But this ideal is generated by the sum α+ α′. Indeed, 1 = µ+ µ′ for some
µ ∈ m and µ′ ∈ m′, and hence α = µ′(α+ α′) and α′ = µ(α + α′). So, in all cases,
the ideal AnnR(I) is principal, and the result follows from (ii).
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(iv) We have that #I = #I⊥ ≤ #(R/J) = #AnnR(J). Since AnnR(J) ⊂ I, we
also have that #I ≥ #AnnR(J), so that we must have equality everywhere, and
(iv) follows.

When R = (Z/MZ)[G], the isomorphism A⊥ ∼= Adual of Prop.1.1 (i) induces a
G-action on Adual = HomZ(A,Q/Z) which is given by (σf)(a) = f(σ(a)). This
action is the inverse of the usual action [3, IV, sect.1] of G on Adual.

2. Cyclotomic units

In this section we fix a prime l > 2 and let ζl denote a primitive l-th root of unity.
We give a description of the group of units modulo cyclotomic units associated to
Q(ζl + ζ−1

l ) that is suitable for explicit computation.
We let K = Q(ζl + ζ−1

l ), we let O denote the ring of integers of K, and we
put G = Gal(K/Q) ∼= (Z/lZ)∗/{±1}. The group Cyc of cyclotomic units is the
multiplicative Z[G]-module generated by the unit

η =
ζgl − ζ

−g
l

ζl − ζ
−1
l

.

Here g denotes a primitive root modulo l. The group Cyc does not depend on the
choice of g. It contains the unit −1, and the G-homomorphism Z[G] −→ Cyc/{±1}
given by x 7→ ηx induces a G-isomorphism Z[G]/(Norm) ∼= Cyc/{±1}. Note that
multiplication by [g] − 1 induces an G-isomorphism Z[G]/(Norm) ∼= I. Here I
denotes the augmentation ideal of Z[G], and Norm =

∑
σ∈G[σ] ∈ Z[G]. Finally we

put

B = O∗/Cyc.

It is well-known [23, Thm.8.2] that the G-module B is finite and has the same order
as the class group of K.

In this section we let M > 1 denote a power of a prime p. We put F = K(ζ2M )
and ∆ = Gal(F/K). First we prove a lemma.

Lemma 2.1. The kernel of the natural map

j : O∗/O∗M −→ F ∗/F ∗M

is trivial if p is odd. It has order 2 and is generated by −1 if p = 2.

Proof (Cf. [23, Prop.15.47]). We fix an embedding F ⊂ C. This embedding iden-
tifies K with a subfield of R. Suppose x > 0 in O∗ ⊂ R∗ is in the kernel of j. Then
x = yM for some y ∈ F ∗. Since the M -th roots of unity are contained in F , we
may assume that y ∈ R, so that the complex conjugation automorphism in ∆ fixes
y. Since ∆ is commutative, this implies that σ(y) ∈ R for all σ ∈ ∆. Therefore
σ(y) = ±y for all σ ∈ ∆.

If p 6= 2, the order of ∆ is odd and hence ∆ fixes y. It follows that y ∈ K∗ and
hence x ∈ O∗M . Since −1 is an M -th power as well, the map j is injective in this
case. If p = 2, we have that y2 ∈ K∗. More precisely, since the quadratic subfields
of F are Q(i), Q(

√
2) and Q(

√
−2), Kummer theory implies that y2 ∈ 〈−1, 2〉K∗2.

Since y is a unit, this implies that y2 = ±u2 for some u ∈ O∗, and hence x = uM .
On the other hand, −1 is the M -th power of ζ2M but −1 is not even a square in K.
This shows that the kernel of j is the cyclic group of order 2 generated by −1, as
required.
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Next we associate to any prime ideal R of degree 1 of the field F = K(ζ2M ) a
G-homomorphism fR : O∗/{±1} −→ (Z/MZ)[G]. Let r denote the prime of K
over which R is lying and let r denote the prime number over which r lies. The
prime r satisfies r ≡ ±1 (mod l) and r ≡ 1 (mod 2M). Consider the diagram
below.

O∗
f1 // (O/rO)∗

f2

∼=
//

f3

��

(OF /rOF )∗
∆

f3

��

µM (O/rO) µM (OF /rOF )∆
f2

∼=
oo (Z/MZ)[Ω]∆

f4

∼=
oo (Z/MZ)[G]

f5

∼=
oo

Here OF denotes the ring of integers of F and Ω denotes Gal(F/Q). There is an
exact sequence 0 −→ ∆ −→ Ω −→ G −→ 0. By µM (A) we denote the group of
M -th roots of unity of a commutative ring A. The map f1 is simply reduction
modulo the ideal rO. The maps f2 are induced by the inclusion maps. The vertical
maps f3 are given by raising to the power (r−1)/M . The map f4 is the restriction of
the Ω-homomorphism (Z/MZ)[Ω] −→ µM (OF /rOF ) that maps 1 ∈ (Z/MZ)[Ω] to
the unique element in OF /rOF that is congruent to ζ2M modulo R and congruent
to 1 modulo all other primes of F that lie over r. By the Chinese Remainder
Theorem and the fact that r is completely split in F , this map and hence the map
f4 are isomorphisms. Finally, the isomorphism f5 is given by multiplication by the
∆-norm

∑
σ∈∆[σ].

We define the G-homomorphism fR by fR = f−1
5 f−1

4 f3f2f1. Since ζ2M ∈ F ∗,
we have that fR(−1) = 0, so that fR factors through the quotient O∗/{±1}:

fR : O∗/{±1} −→ (Z/MZ)[G].

Rather than giving a direct description of the G-module B, we give, for every prime
power M , a description of the dual of the M -torsion of B.

Theorem 2.2. Let M > 1 be a power of a prime p and let I denote the augmen-
tation ideal of the ring (Z/MZ)[G]. There is a natural isomorphism of G-modules

B[M ]⊥ ∼= I/{fR(η) : R ∈ S}.

Here S denotes the set of unramified prime ideals R of K(ζ2M ) of degree 1.

Proof. Let R = (Z/MZ)[G]. Applying the Snake Lemma to the following diagram

0 // Cyc/{±1}

M

��

// O∗/{±1}

M

��

// B

M

��

// 0

0 // Cyc/{±1} // O∗/{±1} // B // 0

gives rise to the exact sequence of R-modules

0→ B[M ]→ Cyc /± CycM → O∗/±O∗M .

By Prop.1.1(ii), taking R-duals is exact and we obtain the exact sequence

HomR(O∗/±O∗M , R) −→ HomR(Cyc/± CycM , R) −→ HomR(B[M ], R) −→ 0.
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Let F = K(ζ2M ). By Lemma 2.1, we can identify the group O∗/ ± O∗M with a
subgroup of F ∗/F ∗M . Therefore, by Kummer theory,

Gal(F ( M
√
O∗)/F ) ∼= HomZ(O∗/{±1}, µM) ∼= HomZ(O∗/{±1},Z/MZ).

The last isomorphism depends on a choice of a primitive M -th root of unity in
K(ζ2M ). The group

HomZ(O∗/{±1},Z/MZ)

is naturally isomorphic to

HomZ(O∗/±O∗M ,Q/Z)

which is in turn isomorphic to

HomR(O∗/±O∗M , R).

This last isomorphism follows from Prop.1.1 (i) and is made completely explicit by
the remark following that proposition. We claim that the homomorphisms fR that
were introduced above correspond exactly to the Frobenius elements of the primes
over R in Gal(F ( M

√
O∗)/F ). To see this, we let ε ∈ O∗ and we note that

fR(ε) =
∑
σ∈G

xσ[σ] ∈ (Z/MZ)[G],

where xσ is determined by σ−1(ε)(r−1)/M ≡ ζxσM (mod R). The homomorphism
in HomZ(O∗/ ± O∗M ,Z/MZ) that corresponds to it maps ε to x1. To this ho-
momorphism Kummer theory associates the automorphism τ in Gal(F ( M

√
O∗)/F )

for which τ( M
√
ε)/ M
√
ε is the unique lift of ε (mod R))(r−1)/M to ζx1

M ∈ µM ⊂ F ∗.
That implies that τ( M

√
ε) ≡ M

√
ε
r (mod R). It follows that fR corresponds to the

Frobenius element of the prime R.
By Cebotarev’s Density Theorem every element of HomR(O∗/{±1}, R) is of the

form fR for some prime R of degree 1. Since Cyc/{±1} is isomorphic to the
augmentation ideal of Z[G], the G-norm kills every R-homomorphism

Cyc/± CycM −→ R.

Therefore the map HomR(Cyc/±CycM , R) −→ I given by f 7→ f(η) is well defined.
Since it is injective and since the orders of the two groups are equal, it is an
isomorphism of R-modules. It follows that

B[M ]⊥ ∼= I/{f(η) : f ∈ HomR(O∗/±O∗M , R)} = I/{fR(η) : R ∈ S}.
This proves the theorem.

3. The computations

In this section we apply Theorem 2.2 and explain how the tables in section 4
were obtained.

Let l be an odd prime and let G = Gal(Q(ζl+ζ
−1
l )/Q). The groupG is naturally

isomorphic to the cyclic group G = (Z/lZ)∗/{±1}. We choose a primitive root g
mod l. Then the ring homomorphism Z[X ]/(X(l−1)/2 − 1)

∼=−→Z[G] that maps the
variable X to the automorphism given by ζl + ζ−1

l 7→ ζgl + ζ−gl is an isomorphism.
Any finite Z[G]-module A is a product of its p-parts A ⊗ Zp. Each p-part is

a module over the ring Zp[G] ∼= Zp[X ]/(X(l−1)/2 − 1). We write (l − 1)/2 =
pam, where pa is the order of the p-part π of G. There is a natural isomorphism
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Zp[G] ∼= Zp[X ]/(Xm − 1)[π]. Since p does not divide m, we can write Xm − 1 =∏
ϕ ϕ(X) as a product of distinct irreducible polynomials ϕ(X) ∈ Zp[X ]. This

gives rise to natural isomorphisms of Zp-algebras

Zp[G] ∼= Zp[X ]/(X(l−1)/2 − 1) ∼= Zp[X ]/(Xm − 1)[π] ∼=
∏
ϕ

Zp[X ]/(ϕ(X))[π]

∼= Zp[X ]/(Xpam − 1) ∼=
∏
ϕ

Zp[X ]/(ϕ(Xpa)).

The ring homomorphisms

Zp[X ]/(ϕ(X))[π]
∼=−→Zp[X ]/(ϕ(Xpa))

that map X to Xpa and a generator of π to Xm provide explicit isomorphisms
between the corresponding factors of the two products. The rings Zp[X ]/(ϕ(Xpa))
can therefore be viewed as group rings with coefficients in an extension of Zp. They
are complete local Zp[G]-algebras with maximal ideals (p, ϕ(X)) and residue fields
isomorphic to Fp[X ]/(ϕ(X)). The orders of the residue fields are given by q = pf ,
where f = degϕ.

The decomposition of the ring Zp[G] enables us to write each p-part of A as
A ⊗ Zp ∼=

∏
ϕAϕ where the “eigenspace” Aϕ is given as Aϕ = A ⊗ Zp ⊗Zp[G]

Zp[X ]/(ϕ(Xpa)). Each eigenspace Aϕ is a module over the corresponding Zp[G]-
algebra Zp[X ]/(ϕ(Xpa)). It admits a filtration with simple subquotients, all of
which are isomorphic to the residue field Fq = Fp[X ]/(ϕ(X)).

The residue fields of the ring Z[G] are precisely the residue fields of the various
local rings Zp[X ]/(ϕ(Xpa)). Every finite Z[G]-module admits a Jordan-Hölder
filtration whose simple factors are one-dimensional vector spaces over these residue
fields. The order of such a simple Jordan-Hölder factor is the order q = pf of the
residue field and its degree d is the order of X modulo ϕ(X). This implies that d
divides (l − 1)/2. The order of p (mod d) is equal to f . Therefore d divides q − 1
as well.

This applies in particular to the module B of units of Q(ζl + ζ−1
l ) modulo

cyclotomic units and to the ideal class group. It also applies to the modules B[M ]⊥

that were discussed in section 2. By Prop.1.2 (i), the simple Jordan-Hölder factors
of B are precisely the ones of the various B[M ]⊥. Simple Jordan-Hölder factors
of B of degree d are invariant under the unique subgroup of G of index d. They
“appear” in the group of units modulo cyclotomic units associated to the unique
subfield of degree d in Q(ζl + ζ−1

l ). It seems difficult to predict, in general, which
simple factors the module B admits. However, there is the following general result.

Proposition 3.1. Let l > 2 be a prime. The module B = O∗/Cyc does not admit
any simple Jordan-Hölder factors of degree d = 1. In particular, it does not admit
any such factors of order q = 2.

Proof. Let M > 1 be a power of a prime p and let (l − 1)/2 = pam with p not
dividing m. By Prop.5.1 (i), the G-invariants of B and hence of its p-part B ⊗ Zp
are zero. This implies that the co-invariantsB⊗Zp modulo (X−1)(B⊗Zp) are zero
and hence, by Nakayama’s Lemma, that the module (B ⊗ Zp)/(Xpa − 1)(B ⊗ Zp)
is also zero. In other words Bϕ = 0 for ϕ = X − 1. This shows that B does not
admit any Jordan-Hölder factors of degree d = 1.
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Simple Jordan-Hölder factors of order q = 2 do not occur since their degrees d
must divide q − 1 = 1. This proves the proposition.

We formulate the results of the previous section in terms of polynomials. Let
M > 1 be a power of a prime p, let S denote the set of primes r for which r ≡
±1 (mod l) and r ≡ 1 (mod 2M), and let r ∈ S. In terms of the isomorphism
Z[G] ∼= Z[X ]/(X(l−1)/2 − 1) mentioned above, we have that

fR(η) =
(l−1)/2∑
k=1

logr

(
ζg
k

l − ζ
−gk
l

ζg
k−1

l − ζ−gk−1

l

)
·Xk ∈ (Z/MZ)[X ]/(X(l−1)/2 − 1).

Here logr(x) denotes the element i ∈ Z/MZ for which ζiM is congruent to x(r−1)/M

modulo the prime R. Notice that changing the choice of the prime R over r only
changes the choice of ζM and therefore multiplies fR(η) by a unit of Z/MZ. Chang-
ing the prime r over r, on the other hand, changes the choice of ζl and multi-
plies fR(η) by a power of X . Therefore fR(η) depends, up to units, only on the
prime r. Since η has norm ±1, the element fR(η) is contained in the augmentation
ideal I ⊂ (Z/MZ)[X ]/(X(l−1)/2−1). This is the ideal generated by X−1. Dividing
by X − 1 gives an isomorphism I −→ (Z/MZ)[X ]/((X(l−1)/2 − 1)/(X − 1)). We
denote the image of fR(η) in this ring by fr(X). Up to multiplication by units,
this polynomial only depends on the prime r. We have that

fr(X) =
(l−1)/2∑
k=1

logr
(
ζg
k

l − ζ
−gk
l

)
·Xk ∈ (Z/MZ)[X ]

/ (
X(l−1)/2 − 1

X − 1

)
.

Theorem 3.2. Using the notation above, we have that

B[M ]⊥ ∼= (Z/MZ)[X ]
/ 〈

X(l−1)/2 − 1
X − 1

, fr(X) : r ∈ S
〉
.

Proof. Here B[M ]⊥ = HomR(B[M ], R), where R = (Z/MZ)[G]. The result is
immediate from Theorem 2.2.

Next we fix a prime l and a prime power q = pf , and we explain how to compute
the part of B that admits a Jordan-Hölder filtration with simple factors of order q.
In the range of our calculations we have that l < 10, 000 and q < 80, 000.

Step 1. For a given l we first decide whether B admits any Jordan-Hölder factors
of order q at all. The possible degrees d of these factors all divide

δ = gcd((l − 1)/2, q − 1).

By Prop.3.1 Jordan-Hölder factors of degree d = 1 do not occur. Therefore the first
step is trivial when δ = 1. We use Theorem 3.2 with M = p. Since B⊥/pB⊥ ∼=
B[p]⊥, Nakayama’s Lemma and Prop.1.2 (i) imply that the module B admits no
Jordan-Hölder factors of order q if and only if B[p]⊥/ϕB[p]⊥ is trivial for all divisors
ϕ of Xm − 1 of degree f . We check this for all ϕ simultaneously by calculating
several polynomials

fr(X) =
δ∑
j=1

logr

 ∏
k≡j (mod l−1

2δ )

(ζg
k − ζ−gk)

 ·Xj
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in the ring (Z/pZ)[X ]/(X
δ−1
X−1 ). Here r ∈ S and g is the primitive root modulo l

used above. The point is that every irreducible divisor ϕ of degree f of Xm − 1
also divides Xδ−1

X−1 . It is important in practice to first compute the products over
k ≡ j (mod (l − 1)/2δ) and only then their logarithms in Z/pZ.

Then one puts d0 = Xδ−1
X−1 and computes di = gcd(di−1, fri(X)) for various

primes r1, r2, . . . ∈ S. Each di divides its predecessor di−1. As soon as di is
not divisible by any irreducible polynomial of degree f , we stop. The formula of
Theorem 3.2 implies that B[p]⊥/ϕB[p]⊥ = 0 for all ϕ of degree f , and hence that
B⊥ as well as B do not admit any Jordan-Hölder factors of order q. This is what
happens most of the time. It is important that this part of the program is efficient.
When di admits an irreducible divisor ϕ of degree f for ever larger values of i, we
also stop, but this time we believe, on the basis of Theorem 2.2, that B admits
a Jordan-Hölder factor corresponding to the polynomial ϕ, and we proceed to the
second step of the algorithm.

The second and third steps of the algorithm are executed only very rarely. They
need not be very efficient.

Step 2. Since the polynomials di of the first step divide Xq−1 − 1 ∈ (Z/pZ)[X ],
they are squarefree. For each ϕ(X), an irreducible factor of degree f that divides
all di’s, we want to determine the structure of the eigenspace B⊥ϕ . We do the
following. For M = p, p2, p3, . . . we compute a lift of ϕ(X) to an irreducible
divisor of Xq−1− 1 ∈ Z/MZ[X ]. We use the description of B[M ]⊥ of Theorem 3.2
and take its ϕ-part. We let

fr(X) =
pad∑
j=1

logr

 ∏
k≡j (mod l−1

2dpa )

(ζg
k

l − ζ
−gk
l )

 ·Xj

in the ring (Z/MZ)[X ]/(ϕ(Xpa)). Here d denotes the degree of the Jordan-Hölder
factor corresponding to ϕ, and pa is the exact power of p dividing (l − 1)/2. We
have that

B[M ]⊥ϕ ∼= (Z/MZ)[X ]/〈ϕ(Xpa), fr(X) : r ∈ S〉,

where S denotes the set of primes that are congruent to 1 (mod M) and congruent
to ±1 (mod l).

Let R denote the finite local ring (Z/MZ)[X ]/(ϕ(Xpa)). Note that R is isomor-
phic to the group ring (W/MW )[π], whereW denotes the p-adic ring Zp[X ]/(ϕ(X)).
We let I0 be the zero ideal of R, and then pick several primes r1, r2, . . . ∈ S and
compute the R-ideals Ii = Ii−1 + (fri(X)). Each Ii contains its predecessor Ii−1.
If our belief in the previous step was justified, the ideals Ii will stabilize at some
nonunit ideal I(M) of R. There is a surjective homomorphism

R/I(M) −→ B[M ]⊥ϕ ,

which we then believe to be an isomorphism. We proceed in this way for M = p, p2,
. . . and compute the orders o(M) of the quotients (Z/MZ)[X ]/(ϕ(Xpa) + I(M)).
Since these rings are supposed to be isomorphic to B[M ]⊥ϕ , the sequence o(p), o(p2),
. . . will be nondecreasing. For some M we will then find that o(pM) = o(M). It
follows that M annihilates (Z/pMZ)[X ]/(ϕ(Xpa) + I(pM)) and hence its quotient
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B[pM ]⊥ϕ . Nakayama’s Lemma implies then that M annihilates B⊥ϕ . Therefore we
have an explicit ideal I(M) ⊂ R and a surjection

R/I(M) −→ B⊥ϕ ,

which we believe to be an isomorphism. All computations are gcd computations in
the rings R = (Z/MZ)[X ]/(ϕ(Xpa)).

In the third and last step we attempt to prove that B⊥ϕ is actually isomorphic to
the cyclic module R/I(M) that has been computed in the second step. The method
can already be found in a paper by G. and M.-N. Gras [10].

Step 3. Let ϕ be as in Step 2. Let M be a power of p that kills B⊥ϕ and, as before,
let R denote the ring (Z/MZ)[X ]/(ϕ(Xpa)). Consider the exact sequence

0 −→ B[M ] −→ Cyc/± CycM −→ Cyc/±O∗M −→ 0,

where the first homomorphism is given by ε 7→ εM . Recall that the (Z/MZ)[G]-
module Cyc/±CycM is isomorphic to the augmentation ideal of (Z/MZ)[G]. Since
ϕ 6= X − 1, the ϕ-part R of (Z/MZ)[G] is isomorphic to the ϕ-part of its augmen-
tation ideal. Since M annihilates Bϕ, we obtain the exact sequence

0 −→ Bϕ −→ R −→ Cϕ −→ 0

of R-modules. Here C denotes the G-module Cyc/ ± O∗M . By Step 2, the first
condition of Prop.1.2 (iv) with J = I(M) is satisfied. We now check the second
condition: we must show that the AnnR(J) annihilates Cϕ.

For every (Z/MZ)[G]-module A we have that Aϕ ∼= X(l−1)/2−1
ϕ(Xpa )

A. Therefore

AnnR(J) annihilates Cϕ if and only if X(l−1)/2−1
ϕ(Xpa )

AnnR(J) annihilates C. This can
be checked directly by a computation similar to the one explained below. In order to
keep the objects as small as possible, we do something slightly more subtle. Let a′ be
the smallest exponent such that ϕ(Xpa

′
) ∈ I(M). Let R′ = (Z/MZ)[X ]/(ϕ(Xpa

′
))

and let J ′ denote the image of the ideal I(M) in R′. The ring R′ is isomorphic to the
group ring (Z/MZ)[X ]/(ϕ(X))[π′], where π′ is the unique quotient of π of order pa

′
.

We have that R/J ∼= R′/J ′. Since the rings R and R′ are Gorenstein, we have that

#AnnR(J) = #AnnR′(J ′). This implies that AnnR(J) = ϕ(Xp
a

)

ϕ(Xpa
′
)
AnnR′(J ′). We

conclude that

AnnR(J) annihilates Cϕ ⇐⇒ X(l−1)/2−1

ϕ(Xpa
′
)

AnnR′(J ′) annihilates Cyc/±O∗M .

In order to check this, we compute a finite set of generators g(X) of AnnR′(J ′).
For each g(X) and j = 1, . . . , dpa

′
we compute a high precision approximation uj

to τj(ηx) ∈ R, where x ∈ Z[X ] is a lift of the polynomial

X
l−1
2 − 1

ϕ(Xpa′ )
· g(X) ∈ (Z/MZ)[X ].

Here τj denotes the embedding Q(ζl+ζ−1
l ) ↪→ R given by ζl+ζ−1

l 7→ 2cos(2gjπ/l).

Note that (X(l−1)/2 − 1)/ϕ(Xpa
′
) is divisible by the norm map

(X(l−1)/2 − 1)/(Xdpa
′

− 1)

from Q(ζl+ζ
−1
l ) to its subfield of degree dpa

′
. Therefore τj(ηx) = τj′ (ηx) whenever

j ≡ j′ (mod dpa
′
).
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Rounding off the coefficients of the polynomial
∏dpa

′

j=1 (t−uj), we obtain a polyno-
mial F (t) ∈ Z[t] that has ηx and its conjugates as zeroes. If M is odd, we compute

the product
∏dpa

′

j=1 (t− M
√
uj) ∈ R[t]. It should have coefficients that are very close

to integers. This already indicates that the roots of F (t) are M -th powers, but
does not prove that they are M -th powers of elements in the field Q(ζl + ζ−1

l ). To
be sure of that, we round off the coefficients of F (t) and check that the resulting
polynomial G(t) ∈ Z[t] divides F (tM ).

If M is a power of 2, there are sign ambiguities. The numbers ui all have the
same sign. If they are negative, we change their signs. Then, for all 2d2a

′
−1 possible

choices of signs, we consider the polynomial (t− M
√
u1)
∏d2a

′

j=2 (t± M
√
uj) ∈ R[t]. Only

one of these has coefficients that are very close to integers. We then check that the
polynomial G(t) ∈ Z[t] obtained by rounding off these coefficients divides F (tM ).
In either case, if the approximations are sufficiently accurate, we have proved that
ηx is an M -th power in Q(ζl + ζ−1

l ). It follows from Proposition 1.2 (i) that B⊥ϕ is
actually isomorphic to R/I(M), as required.

Example. For l = 4297 and q = 4 the order of the 2-part π of the Galois group Gl
is 4. In the notation used above, this means that a = 2. The only simple Jordan-
Hölder factor of order 4 corresponds to the polynomial ϕ = X2 + X + 1. We find
in the first step that ϕ divides all the gcd’s di and we are led to believe that Bϕ is
nontrivial. The eigenspace Bϕ is a module over the ring Z2[X ]/(ϕ(X4)) ∼= W [π] ∼=
W [T ]/((1 + T )4 − 1). Here W = Z2[ζ], where ζ = X4 is a cube root of unity. As
in Iwasawa theory, the polynomial 1 + T = X3 corresponds to a generator of π.

Since the maximal ideal of the local ring W [π] ∼= W [T ]/((1 + T )4 − 1) is equal
to (T, 2), the parameter T is convenient for doing computations. Every element
of W [π] can be written as a a unit times a “Weierstrass polynomial” of the form
2µ(T λ+. . .+a0) with ai ≡ 0 (mod 2) for 0 ≤ i < λ. These Weierstrass polynomials
are not unique in general. The polynomials fr that are listed below are such
Weierstrass polynomials associated to the polynomials fr of Thm.2.3 (and are only
well defined up to units).

Next we perform the second step for M = 2, 4, 8, . . . . For M = 2, we compute
the ideal I(2) of (W/2W )[π] generated by the polynomials fr in the table. Al-
ready the first polynomial T 2 generates I(2). After five more tries, we believe that
adding more polynomials fr will not enlarge the ideal any further. So, the module
(W/2W )[π]/(T 2) ∼= W [T ]/(T 2, 2) of order 42 admits a homomorphism onto B⊥ϕ [2]
which we believe to be an isomorphism.

M = 2.
r fr ∈ (W/2W )[π]

17189 T 2

111721 T 2

171881 T 2

180473 T 2

214849 T 2

283601 T 3

M = 4.
r fr ∈ (W/4W )[π]

111721 2(1 + ζ)T + T 2

171881 2ζT + T 2

180473 2(1 + ζ)T + T 2

214849 2(1 + ζ)T + T 2

283601 2(1 + ζ)T + 2T 2 + T 3

378137 2T + T 2
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M = 8.
r fr ∈ (W/8W )[π]

214849 4 + (2 + 6ζ)T + T 2

283601 4ζ + (2 + 2ζ)T + 2T 2 + T 3

687521 4 + (2 + 2ζ)T + T 2

833617 4 + (2 + 2ζ)T + T 2

893777 4ζ + (2 + 6ζ)T + (4 + 4ζ)T 2 + T 3

1031281 6T + T 2

1306289 4ζ + (4 + 6ζ)T + T 2

1727393 4 + (6 + 2ζ)T + T 2

M = 16.
r fr ∈ (W/16W )[π]

214849 (4 + 8ζ) + (10 + 6ζ)T + T 2

687521 4 + (10 + 2ζ)T + T 2

1727393 (12 + 8ζ) + (14 + 2ζ)T + T 2

1864897 (8 + 4ζ) + (4 + 6ζ)T + T 2

1925057 (12 + 8ζ) + (14 + 2ζ)T + T 2

2062561 (12 + 12ζ) + (14 + 8ζ)T + 10ζT 2 + T 3

3102433 (4 + 4ζ) + (2 + 4ζ)T + (2 + 12ζ)T 2 + T 3

3300097 (12 + 4ζ) + (4 + 4ζ)T + T 2

For M = 4, we find the ideal I(4) = (T 2, 2T ) of (W/4W )[π]. The ideal I(4) is al-
ready generated by the first two polynomials fr. Once again we believe that adding
more polynomials fr will not enlarge the ideal any further. Therefore the module
(W/4W )[π]/(T 2, 2T ) ∼= W [T ]/(T 2, 2T, 4) of order 43 admits a homomorphism onto
B⊥ϕ [4] which we believe to be an isomorphism.

For M = 8 the polynomials fr generate the ideal

I(8) = (T 2 + 2T, 2T + 4(ζ + 1))

of (W/8W )[π]. It follows that the module

(W/8W )[π]/(T 2 + 2T, 2T + 4(ζ + 1)) ∼= W [T ]/(T 2 + 2T, 2T + 4(ζ + 1), 8)

of order 44 admits a homomorphism onto B⊥ϕ [8]. Actually, already the first two
polynomials fr generate I(8). We suspect once again that this map is, in fact, an
isomorphism.

For M = 16 we find that the polynomials fr generate the ideal

I(16) = (T 2 + 2T, 2T + 4(ζ + 1), 8)

of (W/16W )[π]. The module

(W/16W )[π]/(T 2 + 2T, 2T + 4(ζ + 1), 8) ∼= W [T ]/(T 2 + 2T, 2T + 4(ζ + 1), 8)

admits a surjective homomorphism onto B⊥ϕ [16] This module is isomorphic to the
one we found for M = 8. Since it is killed by 8, we have that B⊥ϕ = B⊥ϕ [8].

This concludes Step 2. We now suspect that B⊥ϕ is isomorphic to R/J with
R = (O/8O)[π] and J = (T 2 + 2T, 2T + 4(ζ + 1)).

Finally we do the computations of Step 3. First we observe that ϕ(X2) =
ζ2(T 2 + 2T ) is in J . Therefore, in the notation used above, we havethat a′ = 1.



926 RENÉ SCHOOF

So R/J ∼= R′/J ′ with R′ = (W/8W )[π′] = (W/8W )[T ]/(T 2 + 2T ) and J ′ =
(2T − 4(ζ + 1)). Here π′ denotes the order 2 quotient of π. One checks that
AnnR′(J ′) = (4, T + 2ζ). The elements x ∈ Z[G] introduced above are

x =
X2148 − 1

X4 +X2 + 1
· g(X),

with g(X) = 4 and g(X) = T + 2ζ = X3 − 1 + 2X2. We raise η to the symbolic
power (X2148−1)/(X4+X2+1) and compute its image under τj for j = 1, 2, . . . , 6.
In other words, we compute τj(N(η)X

2−1) for j = 1, 2, . . . , 6. Here N denotes the
norm map from Q(ζl + ζ−1

l ) to its degree 6 subfield. The resulting real numbers
appear to be the zeroes of the following polynomial in Z[t]:

F (t) = t6 + 900176138747448t5 + 185766377755735633731676590t4

+ 127973707497873453310375901520t3− 2553521583555102412987t2

+ 207337205736t− 1.

Let ε denote a zero of F (t) in the degree 6 subfield of Q(ζl + ζ−1
l ). We raise it to

the symbolic powers g(X) = 4 and T + 2ζ and then check whether they are 8th
powers. When g(X) = 4, this boils down to checking whether ε is a square.Indeed,
the square root of ε turns out to be a zero of the polynomial

G1(t) = t6 + 1142996t5 + 22804194t4 + 70290306t3− 2208643t2 + 17182t+ 1.

In addition, G1(t) divides F (t2).
Next, the 8th root of εT+2ζ is a root of the polynomial

G2(t) = t6 + 17182t5 + 64470t4 + 51544t3 − 17173t2 − 6t+ 1,

and G2(t) divides H(t8), where H(t) denotes the minimum polynomial of εT+2ζ .
This shows that ε4 and εT+2ζ are 8th powers in Q(ζl+ζ

−1
l ). With this computa-

tion we have now verified the second condition of Prop.1.2 (iv) and we can conclude
that the module B⊥ϕ is actually isomorphic to (W/8W )[π]/(T 2+2T, 2T−4(ζ+1)) ∼=
W [T ]/(T 2 + 2T, 2T − 4(ζ + 1), 8).

4. Tables

In this section we discuss the numerical results. Recall that for an odd prime l,
the number h̃+

l denotes the order of the largest submodule of Bl or of Cl+l that
admits a Jordan-Hölder filtration with simple factors of order q < 80, 000.

Table 4.1. Small h̃+
l .

h̃+
l freq % h̃+

l freq % h̃+
l freq %

1 925 75.3% 8 8 0.7% 15 0 0.0%
3 37 3.0% 9 12 1.0% 16 12 1.0%
4 47 3.8% 11 14 1.1% 17 6 0.5%
5 33 2.7% 12 0 0.0% 19 6 0.5%
7 26 2.1% 13 13 1.0% 20 0 0.0%
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Table 4.2. Large h̃+
l .

l h̃+
l l h̃+

l l h̃+
l l h̃+

l

1231 211 4481 291 2417 697 9421 3388
1459 247 3121 305 5557 1387 6577 5321
3931 256 7489 448 5051 1451 3547 16777
4297 256 641 495 7753 1875 7841 26944
1297 275 9551 541 3301 2416 8017 130473

There are 1228 odd primes l less than 10,000. For 925 of these we have that
h̃+
l = 1. The remaining 303 primes l are listed in the Main Table, at the end

of the paper. The numbers h̃+
l are in the second column. They are given as a

product of the orders of their simple Jordan-Hölder factors. The degrees d of the
Jordan-Hölder factors are indicated in the third column. They are listed in the
same order as the Jordan-Hölder factors themselves. If a simple Jordan-Hölder
factor Fp[X ]/(ϕ(X)) of order q occurs with multiplicity greater than 1, we write
qs0·qs1·qs2 · · · with corresponding degrees d, dp, dp2, . . . to indicate that the orders
of B⊥ϕ modulo ϕ(Xpi) are qs0+...+si for i = 0, 1, 2, . . . . Finally, an asterisque in the
Main Table indicates that the corresponding subfield of degree d belongs to one
of the families of abelian number fields of small degree that we discuss below. A
simplified form of the Main Table already appeared in [23, p.366]. Note however
that the value of h̃+

l for l = 9829 given there is false. The correct value is h̃+
9829 = 5.

We single out some of the numerical results. Table 4.1 contains the frequencies
of the primes l for which h̃+

l ≤ 20. Since simple Jordan-Hölder factors cannot have
order 2 by Prop. 3.1, we always have that h̃+

l 6≡ 2 (mod 4).
Table 4.2 contains the largest values of h̃+

l that we found for l < 10, 000.
Most of the 354 simple Jordan-Hölder factors of Bl, occur with multiplicity 1.

There are 35 exceptions. In Tables 4.3 and 4.4 we present the Galois module
structure of the eigenspacesB⊥ϕ whose Jordan-Hölder filtration has length at least 2.
Here q = pf denotes the order of the simple factors, while d indicates their degree.
In all but three cases there is only one polynomial of degree f . The exceptions
are l = 7351, 7753 and 8563. In these cases there are two polynomials and two
eigenspaces B⊥ϕ , only one of which is nontrivial. The order of the p-part π of Gl
is given in the column indicated by π. The order of B⊥ϕ is given in the column
indicated by “#”. Its Galois module structure is given in the last column. In the
last column W denotes the ring Z2[ζ3] except when l = 3931, when it stands for
the ring Z2[ζ5]. The variable T is as in Iwasawa theory: the polynomial 1 + T
corresponds to a generator of the p-part π of Gl. We do not specify the generator.

It is not difficult to derive the Galois module structure of Bl from the tables.
Usually Bϕ is isomorphic to B⊥ϕ . Indeed, by Prop.1.2 (iii), we have that Bϕ ∼=
B⊥ϕ whenever the length of B⊥ϕ is at most 2. This leaves only the six modules
in Table 4.4. One checks that the annihilators of the corresponding ideals are
principal for l = 2089, 7489 and 9337. In these cases Prop.1.2 (ii) applies and
we still have that Bϕ ∼= B⊥ϕ . In the remaining cases Bϕ is not cyclic as a Galois
module. It is isomorphic to the annihilator of the module listed in the rightmost
column: Bϕ is isomorphic to (T 2 + 3T + 3, 3T ) ⊂ (Z/9Z)[π] for l = 7873 and to
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Table 4.3. B⊥ϕ of length 2.

l q d π # B⊥ϕ
349 4 3 2 42 W [T ]/(T 2, 2)
709 4 3 2 42 W [T ]/(T 2, 2)
937 4 3 4 42 W [T ]/(T + 2ζ, 4)

1129 3 2 3 32 Z3[T ]/(T, 9)
1777 4 3 8 42 W [T ]/(T, 4)
2081 5 2 5 52 Z5[T ]/(T − 5, 25)
3137 3 2 1 32 Z/9Z
3229 3 2 3 32 Z3[T ]/(T + 3, 9)
3931 16 5 1 162 W/4W
4261 4 3 2 42 W [T ]/(T 2, 2)
4357 4 3 2 42 W [T ]/(T + 2ζ, 4)
4409 3 2 1 32 Z/9Z
4561 4 3 8 42 W [T ]/(T 2, 2)
4933 3 2 9 32 Z3[T ]/(T − 3, 9)
5281 3 2 3 32 Z3[T ]/(T − 3, 9)
5521 3 2 3 32 Z3[T ]/(T, 9)
6247 4 3 1 42 W/4W
6637 3 2 3 32 Z3[T ]/(T − 3, 9)
7057 7 2 7 72 Z7[T ]/(T + 7, 49)
7351 7 3 49 72 Z7[T ]/(T, 49)
7573 3 2 3 32 Z3[T ]/(T, 9)
7687 4 3 1 42 W/4W
7753 5 4 1 52 Z/25Z
8017 3 2 3 32 Z3[T ]/(T + 3, 9)
8563 7 3 1 72 Z/49Z
8581 3 2 3 32 Z3[T ]/(T − 3, 9)
9109 4 3 2 42 W [T ]/(T + 2 + 2ζ, 4)
9181 5 2 5 52 Z5[T ]/(T + 5, 25)
9601 4 3 64 42 W [T ]/(T + 2 + 2ζ, 4)

Table 4.4. B⊥ϕ of length 3 and 4.

l q d π # B⊥ϕ
2089 3 2 9 33 Z3[T ]/(T − 3, 27)
4297 4 3 4 44 W [T ]/(T 2 + 2T, 2T − 4(ζ + 1), 8)
7489 4 3 32 43 W [T ]/(T + 2 + 4ζ, 8)
7873 3 2 3 33 Z3[T ]/(T 2, 3T, 9)
8761 3 2 3 34 Z3[T ]/(T 2, 3T, 27)
9337 4 3 4 43 W [T ]/(T + 4− 2ζ, 8)

(T 2+3T+3, 9T ) ⊂ (Z/27Z)[π] for l = 8761. For l = 4297, we have seen in section 3
that B⊥ϕ is a module over the ring (W/8W )[π/π2]. One finds that Bϕ is isomorphic
to the ideal (T + 2ζ, 4) ⊂ (W/8W )[π/π2]. Here ζ denotes a cube root of unity and
W = Z2[ζ].



CLASS NUMBERS OF REAL CYCLOTOMIC FIELDS OF PRIME CONDUCTOR 929

It is not true in general that the Galois modules Bl and Cl+l are isomorphic.
Indeed, for l = 7687, the 2-part of the class group Cl+l is killed by 2, while Bl is
not [2]. We prove in section 5 that the Gl-modules Cl+l and Bl have isomorphic
Galois cohomology groups. In contrast to the case of minus class groups Cl−l that
usually have trivial Galois cohomology groups [19], the cohomology groups of Cl+l
may be nontrivial. It is not difficult to compute them from the information in
Tables 4.3 and 4.4. We leave this to the reader.

Our results are consistent with existing tables. They agree first of all with the
results of Van der Linden [22] that we mentioned in the introduction. The simple
Jordan-Hölder factors of degree d are precisely the ones that occur as factors of the
class groups of the subfields of degree d of Q(ζl + ζ−1

l ). Our results are consistent
with various tables [7], [8], [16] of class numbers of cyclic number fields of small
degree d. In all cases we tried, our results were confirmed by the PARI-program [1].
Finally, recent computations by Y. Koyama and K. Yoshino [11] are consistent with
our tables.

There are several families of abelian number fields known of low degree with
explicitly known units. The units and regulators of these fields are small, so that
their class groups are relatively large. See [6], [14] for connections between these
units and certain modular curves. For instance, when l = n2 + 1 or l = n2 + 4 for
some n ∈ Z, the quadratic subfield of Q(ζl + ζ−1

l ) is given by Q(
√
n2 + 1) with

unit ε = n+
√
n2 + 1, and by Q(

√
n2 + 4) with ε = (n+

√
n2 + 4)/2 respectively.

The “simplest cubics” [18] form a similar family of degree 3. The conductor is
of the form l = n2 + 3n + 9 and the cubic fields are generated by a root of the
polynomial X3−nX2− (n+ 3)X− 1. M.-N. Gras [8], [9] constructed such families
of degree 4 (with conductors l = n2 + 16) and 6 (with conductors l = n2 + 108
and l = 16n2 + 12n+ 9). Emma Lehmer [15] did so for degrees 5 (with conductors
l = n4 + 5n3 + 15n2 + 25n+ 25) and 8 (with conductors l = n4 + 16). The class
numbers of Emma Lehmer’s degrees 5 and 8 have been computed in [17], [20] for all
l < 1010. There are no similar families known for degree 7, 9 or larger, but see [21].

In the range of our computations we encountered several members of these fam-
ilies of number fields. These are indicated with an asterisque in the Main Table.

5. Galois cohomology

Let l > 2 be a prime. In this section we show that the Galois cohomology groups
of the module B of units modulo cyclotomic units are naturally isomorphic to those
of the class group of Q(ζl + ζ−1

l ). See [3] for class field theory and cohomology of
groups.

Proposition 5.1. Let H be a subgroup of G = Gal(Q(ζl + ζ−1
l )/Q). Let O denote

the ring of integers of Q(ζl + ζ−1
l ), let B denote the group of units O∗ modulo its

subgroup of cyclotomic units and let Cl denote the class group of O. Then:
(i) The sequence of H-invariants

0 −→ CycH −→ O∗H −→ BH −→ 0

is exact; in particular, BG = 0.
(ii) There are canonical isomorphisms

Ĥq(H,Cl)
∼=−→ Ĥq+2(H,B), for each q ∈ Z.



930 RENÉ SCHOOF

In particular, for each choice of a generator of H there are natural isomorphisms
Ĥq(H,Cl) ∼= Ĥq(H,B) for each q ∈ Z.

Proof. Let g be a primitive root modulo l and let σ ∈ G denote the automorphism
given by σ(ζl + ζ−1

l ) = ζgl + ζ−gl . It is a generator of G. Let e denote the order
of H and let ee′ = (l − 1)/2 = #G. There is an exact sequence of H-modules

0 −→ {±1} −→ Cyc −→ I −→ 0.

Here I denotes the augmentation ideal of Z[G], and the H-homomorphism Cyc −→
I is given by η 7→ [σ] − 1. Since Ĥ0(H, I) ∼= H1(H,Z) = 0, the natural map
Ĥ0(H, {±1}) −→ Ĥ0(H,Cyc) is surjective. The G-norm of η being −1, the H-
norm of the cyclotomic unit η(σe

′
−1)/(σ−1) is −1 as well. This implies that the

latter map is zero, and we conclude that

Ĥ0(H,Cyc) = 0 and #Ĥ−1(H,Cyc) = e.(1)

The last equality follows from the fact that B = O∗/Cyc is finite, so that the
Herbrand quotient of Cyc is equal to that of O∗, which is equal to e.

Let U denote the group of unit idèles of k = Q(ζl+ζ
−1
l ). Since k is only ramified

at its unique prime over l and since it is totally and tamely ramified at this prime,
we have that Ĥq(H,U) ∼= Ĥq(H,F∗l ) for every q ∈ Z. Therefore there are natural
isomorphisms

Ĥ−1(H,U) ∼= µe(Fl) and Ĥ0(H,U) ∼= F∗l /(F
∗
l )
e.(2)

Here µe denotes the group of e-th roots of unity. We claim that the composite map
α2α1 in

Ĥ−1(H,Cyc) α1−→ Ĥ−1(H,O∗) α2−→ Ĥ−1(H,U)

is an isomorphism. To see this, we consider the cyclotomic unit ε = η2(σe
′
−1)/(σ−1).

It has H-norm 1. We compute its image in µe(Fl). Since (ζgl − ζ
−g
l )/(ζl − ζ−1) ≡

g (mod (ζl − 1)), we see that ε ≡ g2e′ (mod (ζl − 1)). Therefore the image of ε
generates µe(Fl), and it follows that the map α2α1 is surjective. By (1) and (2)
both groups Ĥ−1(H,Cyc) and Ĥ−1(H,U) have order e. Therefore the map α2α1

is actually an isomorphism. It follows that α1 is injective and that α2 is surjective.
Since α1 is injective, the long cohomology sequence associated to the short exact

sequence 0 −→ Cyc −→ O∗ −→ B −→ 0 gives rise to the exact sequence

0 −→ CycH −→ O∗H −→ BH −→ 0,

and (i) follows.
The proof of (ii) involves some more computations. Consider the exact sequence

0 −→ Cyc −→ U −→ U/Cyc −→ 0.

Since the cohomology of the cyclic group H is periodic, it follows from (1) and the
fact that the map α2α1 : Ĥ−1(H,Cyc) −→ Ĥ−1(H,U) is bijective that

Ĥq(H,U/Cyc) = 0, for all odd q ∈ Z,

and that the maps

Ĥq(H,U)
∼=−→ Ĥq(H,U/Cyc)(3)

are isomorphisms for all even q ∈ Z.
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Let C denote the idèle class group of Q(ζl + ζ−1
l ) and consider the two exact

sequences

0 −→ B −→ U/Cyc −→ U/O∗ −→ 0,

0 −→ U/O∗ −→ C −→ Cl −→ 0.

The composite map

Ĥ0(H,U)
∼=−→ Ĥ0(H,U/Cyc) α3−→ Ĥ0(H,U/O∗) α4−→ Ĥ0(H,C)

is an isomorphism. This follows from class field theory, since the Artin map iden-
tifies Ĥ0(H,C) with the Galois group of the fixed field of H over Q and Ĥ0(H,U)
with the inertia group of the unique prime over l. Under this identification the map
above is identified with the inclusion map, which is an isomorphism since the prime
over l is totally ramified.

It follows that α3 is injective and that α4 is surjective. Together with the facts
that H1(H,U/Cyc) = 0 and that, by class field theory, H1(H,C) = 0, this gives
rise to the following natural isomorphisms and exact sequences:

H1(H,U/O∗)
∼=−→H2(H,B),

Ĥ0(H,Cl)
∼=−→H1(H,U/O∗),

0 −→ Ĥ0(H,U/Cyc) α3−→ Ĥ0(H,U/O∗) −→ H1(H,B) −→ 0,

0 −→ Ĥ−1(H,Cl) −→ Ĥ0(H,U/O∗) α4−→ Ĥ0(H,C) −→ 0.

We obtain at once a canonical isomorphism

Ĥ0(H,Cl)
∼=−→H2(H,B).

Since the composite map α4α3 is an isomorphism, an easy diagram chase shows
that the composite map

Ĥ−1(H,Cl) −→ Ĥ0(H,U/O∗) −→ H1(H,B)

is an isomorphism as well. The second statement of part (ii) now follows from the
periodicity of the cohomology of cyclic groups.

6. Heuristics

In this section we estimate the probability that the Main Table of the numbers
h̃+
l is actually a table of class numbers of the fields Q(ζl + ζ−1

l ) for l < 10, 000.
Confronting the numerical data with the Cohen-Lenstra heuristics, we argue that
this probability exceeds 98%.

Note that the Cohen-Lenstra heuristics [4] do not really apply to our situation.
The heuristics apply typically to large sets of cyclic number fields of fixed degree.
They say something about the average behavior of the class groups when the con-
ductors of such fields vary in large intervals. Our situation is rather the opposite,
since the conductors l are at most 10,000 and the main point of this section is to
estimate the behavior of the Jordan-Hölder factors of the ideal class groups Cl+l
that have very large order. As a consequence, we expect that the estimates that
we derive from the Cohen-Lenstra heuristics systematically overestimate the prob-
ability that certain simple Jordan-Hölder factors occur in the class groups or in the
groups Bl associated to the fields Q(ζl+ζ−1

l ). This is fine for our main application,
which is the justification of our claim that the Main Table is actually a table of
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class numbers of Q(ζl + ζ−1
l ) for l < 10, 000. It makes the estimates even more

conservative. On the other hand, some of the other predictions that follow from our
application of the Cohen-Lenstra heuristics appear to be off in a systematic way.

Having said that, we proceed in a somewhat nonrigorous fashion. We estimate
the probability for simple Jordan-Hölder factors of the rings Z[Gl] to occur in the
class groups of the fields Q(ζl + ζ−1

l ). Let M be a simple Jordan-Hölder factor of
the group ring Z[Gl] of order q and degree d > 1. Recall that this implies d divides
q−1 as well as (l−1)/2, that q = pf is a power of a prime p and that f is the order
of p (mod d). The module M is a residue field of the ring Z[Gl]. More precisely,
it is a residue field of the unique quotient ring of Z[Gl] that is isomorphic to Z[ζd].
The ring Z[ζd] admits φ(d)/f residue fields of order q. Here φ denotes Euler’s φ-
function. The number of residue fields of order q of the ring Z[Gl] is obtained by
summing the quantities φ(d)/f over the divisors d > 1 of gcd((l − 1)/2, q − 1) for
which the order of p (mod d) is f .

According to Cohen-Lenstra [4, Example 5.10], the probability that M does
not occur in a “random Z[ζd]-module modulo a random principal ideal” is equal
to
∏
k≥2(1 − q−k). According to the heuristics, the parts of the class groups of

Q(ζl + ζ−1
l ) all of whose simple Jordan-Hölder factors are isomorphic to M behave

statistically as such modules. Therefore, the chance that for a given prime l, the
class group of Q(ζl + ζ−1

l ) does not admit any simple Jordan-Hölder factors of
order q at all is at least

P (q; l) =
∏
k≥2

(1 − q−k)
∑
d φ(d)/f ,

where d runs over the divisors d > 1 of gcd((l − 1)/2, q − 1) for which the order of
p (mod d) is f . Note that P (q; l) only depends on l (mod 2(q − 1)).

Next we also vary l. The proportion of primes l in a long interval for which the
class group of Q(ζl + ζ−1

l ) does not admit any Jordan-Hölder factors of order q is
given by

P (q) =
1

φ(2(q − 1))

∑
l∈(Z/(2(q−1)Z)∗

P (q; l).

It would actually be more natural to fix d as well as q and consider the proportion
P (q, d) of primes l in a long interval for which the class group of Q(ζl + ζ−1

l ) does
not admit any Jordan-Hölder factors of degree d and order q. In these terms,
P (q) =

∑
d P (q, d), where d runs over the divisors of q − 1 modulo which p has

order f . We haven’t done so because of the limited amount of numerical material
available: only 1228 fields.

It follows that the proportion of primes l for which a simple Jordan-Hölder factor
of order q occurs in the class group of Q(ζl + ζ−1

l ) is at most 1−P (q). Since there
are 1228 odd primes l < 10, 000, the sum 1228

∑
q(1 − P (q)), with q running over

the prime powers q < 80, 000, is then the expected number of simple Jordan-Hölder
factors, not counting multiplicities, that we should find as factors of the class groups
in the range of our computations. Its value, 406.4 . . . out of the 85 million that are
a priori possible, is somewhat larger than 354, the actual number that we found,
but the order of magnitude is about right. Similarly, the predicted proportion of
primes l for which the class number of Q(ζl+ζ−1

l ) is 1 is at least
∏
q P (q) ≈ 71.3%.
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Figure 6.1. Distribution of the Jordan-Hölder factors of order
q < 150 in Bl for l < 10, 000.

This is not very much smaller than the proportion of 75.3% of primes l with h̃+
l = 1

that we found.
In Figure 6.1 we present a histogram counting the number of primes l < 10, 000

for which the class group of the field Q(ζl+ζ
−1
l ) admits a simple Jordan-Hölder fac-

tor of order q < 150 (black columns) and the expected number 1228(1−P (q)) (grey
columns). Note that 347 of the 354 simple Jordan-Hölder factors are accounted for
by this histogram. The seven missing Jordan-Hölder factors have orders 151, 211,
313, 421, 541, 883 and 1451 respectively.

Finally we turn to the Main Table. We recall that it contains the orders h̃+
l of

the subgroups of the class groups of Q(ζl+ζ−1
l ) for l < L = 10, 000 that admit only

Jordan-Hölder factors of order q < Q = 80, 000. The chance P that the numbers
h̃+
l that we found are equal to the class numbers is therefore

∏
l<L

∏
q>Q

P (q; l).

Recall that P (q; l) only depends on l (mod 2(q− 1)). We estimate P (q; l) by drop-
ping the condition that the order of p (mod d) is equal to f and by replacing
φ(d)/f by φ(d). This enlarges the exponent and hence makes the product smaller.
Therefore the probability P that the Main Table is a table of class numbers is at
least ∏

q>Q

∏
k≥2

(1− q−k)
∑

1<d|q−1 φ(d)#{l<L:l≡1 (mod 2d)}.
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Replacing #{l < L : l ≡ 1 (mod 2d)} by π(L)/φ(2d) and taking a logarithm, we
find that −log(P) is (approximately) at most

π(L)
∑
q>Q

e(q − 1)
∑
k≥2

−log(1− q−k) ≈ π(L)
∑
n>Q

e(n)
n2

.

Here e(n) = 0 when n + 1 is not a prime power, while it denotes the number of
divisors d > 1 of n, weighting the even ones with weight 1/2, when n+ 1 is a prime
power. A partial summation argument gives that∑

n>Q

e(n)
n2
≤
∑
n>Q

E(n)
n3

,

where

E(n) =
∑
d odd

#{q < n : q is a prime power and q ≡ 1 (mod d)}

+
1
2

∑
d even

#{q < n : q is a prime power and q ≡ 1 (mod d)}.

By the prime number theorem and Dirichlet’s Theorem on primes in arithmetic
progressions we have that

E(n) ≈ n

logn

∑
d≤n

1
ψ(d)

,

where ψ(d) = φ(d) when d is odd, while ψ(d) = 2φ(d) when d is even. The function
ψ is multiplicative, and in order to estimate the average value of 1/ψ(d) we compute∑

n≥1

1
ψ(n)ns

/ ∑
n≥1

1
nns

 , for s→ 0.

Evaluating the Euler products, we find the value

c =
∏
p odd

p2 − p+ 1
(p− 1)p

=
2
3
ζ(2)ζ(3)
ζ(6)

.

Here ζ(s) denotes the Riemann zeta function. It follows that 1/ψ(d) is on the
average c/d, and hence

E(n) ≈ n

logn
c
∑
d≤n

1
d
≈ cn.

This implies that −log(P) is (approximately) at most

π(L)
∑
n>Q

cn

n3
≈ cπ(L)

Q
.

Finally we substitute π(L) = 1228 and Q = 80, 000. Since c = 2
3
ζ(2)ζ(3)
ζ(6) =

1.29573 . . . , we find −log(P) ≤ 0.019889, and it seems therefore reasonable to
estimate the probability P that the Main Table is a table of class numbers to be at
least 98%.
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Main Table

l h̃+
l deg l h̃+

l deg l h̃+
l h̃+

l

163 4 3∗ 2351 11 5 4639 4 3
191 11 5∗ 2381 11 10 4649 3 2
229 3 2∗ 2417 17·41 4∗, 8∗ 4657 5 4
257 3 2∗ 2437 7 3 4729 3·13 2, 12
277 4 3 2473 5 4 4783 7 3
313 7 3∗ 2557 3·7·7 2, 3∗, 6 4789 4 3
349 4·4 3∗, 6 2617 13 4∗ 4793 5 4
397 4 3 2621 11 10 4801 4 3
401 5·9 2∗, 8 2659 19 3∗ 4817 17 8
457 5 4∗ 2677 3 2 4861 7 6
491 8 7 2689 4 3 4889 5 2
521 27 26 2713 3 2 4933 3·3 2, 6
547 4 3 2753 9 8 4937 5 4
577 7 2∗ 2777 3 2 4993 5 4
607 4 3∗ 2797 4 3 5051 1451 5∗

631 11 5 2803 4 3 5081 3 2
641 5·11·9 4∗, 5, 8∗ 2857 3 2 5101 11 10
709 4·4 3∗, 6 2917 3·7 2∗, 6∗ 5119 31 3∗

733 3 2∗ 2927 8 7 5197 4 3
761 3 2 3001 11·11 5, 10 5209 29 14
821 11 10 3037 4 3 5261 3 2
827 8 7 3041 13 4∗ 5273 7 2
829 47 46 3121 5·61 2, 20 5281 3·3 2, 6
853 4 3 3137 32 2∗ 5297 3 2
857 5 4∗ 3181 5 2 5333 3 2∗

877 7·7 3∗, 6∗ 3217 7 3 5413 23 11
937 4·4 3∗, 6 3221 3 2 5417 7 2
941 16 5∗ 3229 3·3 2, 6 5437 31 6∗

953 71 7 3253 5 2∗ 5441 11 10
977 5 4∗ 3271 4 3 5477 3 2∗

1009 7·4 2, 3 3301 16·151 5, 15 5479 4 3
1063 13 3∗ 3313 19·7 3∗, 6∗ 5501 11 5
1069 7 6∗ 3433 37 12 5521 32 2
1093 5 2∗ 3469 13 6 5531 8 7
1129 32·7 2,3∗ 3517 4 3 5557 19·73 3∗,6
1153 19 9 3529 19 3 5581 73 9
1229 3 2∗ 3547 19·883 3∗, 9 5641 9 4∗

1231 211 15 3571 7 3 5659 4 3
1297 11·25 2∗, 8 3581 11 5 5701 101 10
1373 3 2∗ 3697 5 4 5741 3 2
1381 7 6 3727 4 3 5779 4 3
1399 4 3 3877 3 2 5821 3 2
1429 5 2 3889 3 2 5827 13 3
1459 13·19 3, 9 3931 162 5 5953 4·7 3, 3
1489 3·19 2, 3∗ 4001 3 2 6037 4·7 3, 6∗

1567 7 3∗ 4049 23 11 6053 3 2
1601 7 2∗ 4073 5 4 6073 13 12
1697 17 4∗ 4099 4 3 6079 4 3
1699 4 3 4177 19 18 6113 5 2
1777 42 3 4201 11 5 6133 3 2
1789 4 3 4219 4·7 3, 3 6163 4 3
1831 7 3 4229 7 2∗ 6229 13 6
1861 11 5 4241 9 4∗ 6247 42 3
1873 25 8 4261 4·4 3, 6 6257 29 4∗

1879 4 3 4297 42·42 3∗, 6∗ 6301 8 7
1889 49 16 4327 8 7 6337 97 48
1901 3 2 4339 7 3 6361 61 20
1951 4 3 4357 5·4·4 2∗, 3, 6 6421 41 10
1987 7 3∗ 4409 32 2 6449 5 4
2029 7 2∗ 4441 5·5 2, 4 6481 5 2
2081 5·5 2, 10 4457 5 4 6521 5 4
2089 3·3·3 2, 6, 18 4481 3·97 2, 32 6529 13 12
2113 37 12 4493 3 2∗ 6553 4 3
2131 4 3 4561 4·4 3, 6 6577 17·313 4∗, 8∗

2153 5 2 4567 4 3 6581 11 5
2161 16 5 4591 19 9 6637 3·4·3 2, 3, 6
2213 3 2∗ 4597 3·7 2, 6∗ 6673 17 8
2311 4 3 4603 79 39 6709 4·7 3, 3
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Main Table (continued)

l h̃+
l deg l h̃+

l deg l h̃+
l h̃+

l

6737 9 4 8011 4 3 9109 4·4 3, 6
6781 13 6 8017 3·19·3·7·109 2, 3∗, 6∗, 6∗, 12 9127 31 3∗

6833 8 7 8069 3 2 9133 3·7 2, 6∗

6949 5 2 8101 13 2∗ 9161 5 4
6961 17 8 8161 5 4 9181 5·5 2, 10
6991 7 3 8191 4 3 9241 13 3
6997 3·7 2, 6∗ 8209 4 3 9277 7 3
7027 4 3 8269 37 3 9281 3 2
7057 3·7·7 2∗, 2∗, 14 8287 7 3 9283 4 3
7229 5 2∗ 8297 5·9 4∗, 4∗ 9293 3 2
7297 4 3 8317 113 14 9319 4·7 3∗, 3∗

7333 13 6∗ 8377 5 4 9337 4·4·4 3, 6, 12
7351 7·7 3, 21 8389 19 6∗ 9377 5 4
7369 13 12 8431 31 15 9391 4 3
7411 131 65 8501 5 2 9413 3·27 2∗, 26
7417 109 12 8563 72 3∗ 9421 4·11·7·11 3, 5, 6,10
7481 3 2 8581 3·3 2, 6 9511 73 3
7489 7·4·42 3∗, 3∗, 6 8597 3 2 9521 113 28
7529 5 4 8629 4·7 3, 3 9551 541 5
7537 3 2 8647 4 3 9601 4·5·4 3, 4, 6
7561 37 6 8681 11 10 9613 7 6
7573 32 2∗ 8689 5 2 9649 4 3
7589 8 7 8713 3·67 2, 33 9689 29 28
7621 7 3 8731 4 3 9697 7·9 3, 4
7639 4 3 8761 33·3 2, 6 9721 4 3
7673 3 2 8831 16 5 9749 3 2
7687 42 3 8837 3 2∗ 9817 17 4∗

7753 3·25·52 2, 3, 4 8887 4 3 9829 5 2
7817 5 2 8893 7 6 9833 3 2
7841 421·8·8 5∗, 7, 7 9001 31 10 9857 73 8
7867 4 3 9013 7 6 9907 31 3∗

7873 32·3 2, 6 9029 7 2∗

7879 4 3 9041 17 4∗

7937 41 4∗ 9049 7 2
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http://hasse.mathematik.tu-muenchen.de/ntsw/pari
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