Class numbers of real cyclotomic fields of prime conductor
HTML articles powered by AMS MathViewer
- by René Schoof;
- Math. Comp. 72 (2003), 913-937
- DOI: https://doi.org/10.1090/S0025-5718-02-01432-1
- Published electronically: February 15, 2002
- PDF | Request permission
Abstract:
The class numbers $h_{l}^{+}$ of the real cyclotomic fields $\mathbf {Q}(\zeta _{l}^{}+\zeta _{l}^{-1})$ are notoriously hard to compute. Indeed, the number $h_{l}^{+}$ is not known for a single prime $l\ge 71$. In this paper we present a table of the orders of certain subgroups of the class groups of the real cyclotomic fields $\mathbf {Q}(\zeta _{l}^{}+\zeta _{l}^{-1})$ for the primes $l<10,000$. It is quite likely that these subgroups are in fact equal to the class groups themselves, but there is at present no hope of proving this rigorously. In the last section of the paper we argue —on the basis of the Cohen-Lenstra heuristics— that the probability that our table is actually a table of class numbers $h_{l}^{+}$, is at least $98\%$.References
- Batut, C., Belabas, K., Bernardi, D., Cohen, H., Olivier, M.: User’s guide to PARI-GP, (version 2.0.16), Lab. A2X, Université Bordeaux I, Bordeaux 1999. http://hasse.mathematik.tu-muenchen.de/ntsw/pari
- Berthier, T.: Générateurs et structure du groupe des classes d’ideaux des corps de nombres abéliens, Thèse Université de Franche-Comté (1994) N. d’ordre 417.
- J. W. S. Cassels and A. Fröhlich (eds.), Algebraic number theory, Academic Press, London; Thompson Book Co., Inc., Washington, DC, 1967. MR 215665
- H. Cohen and H. W. Lenstra Jr., Heuristics on class groups of number fields, Number theory, Noordwijkerhout 1983 (Noordwijkerhout, 1983) Lecture Notes in Math., vol. 1068, Springer, Berlin, 1984, pp. 33–62. MR 756082, DOI 10.1007/BFb0099440
- Pietro Cornacchia, Anderson’s module for cyclotomic fields of prime conductor, J. Number Theory 67 (1997), no. 2, 252–276. MR 1486503, DOI 10.1006/jnth.1997.2184
- J. Horn, Über eine hypergeometrische Funktion zweier Veränderlichen, Monatsh. Math. Phys. 47 (1939), 359–379 (German). MR 91, DOI 10.1007/BF01695508
- Marie-Nicole Gras, Méthodes et algorithmes pour le calcul numérique du nombre de classes et des unités des extensions cubiques cycliques de $\textbf {Q}$, J. Reine Angew. Math. 277 (1975), 89–116 (French). MR 389845, DOI 10.1515/crll.1975.277.89
- Gras, M.-N.: Table numérique du nombre de classes et des unités dans les extensions cycliques réelles de degré 4 de Q, Publ. Math. Besançon 1977/78, fasc. 2.
- Marie-Nicole Gras, Special units in real cyclic sextic fields, Math. Comp. 48 (1987), no. 177, 179–182. MR 866107, DOI 10.1090/S0025-5718-1987-0866107-1
- Georges Gras and Marie-Nicole Gras, Calcul du nombre de classes et des unités des extensions abéliennes réelles de $Q$, Bull. Sci. Math. (2) 101 (1977), no. 2, 97–129 (French). MR 480423
- Koyama, Y. and Yoshino K.: Prime divisors of real class numbers of $p^{r}$th cyclotomic field and characteristic polynomials attached to them, preprint August 2000.
- S. Bergmann and J. Marcinkiewicz, Sur les fonctions analytiques de deux variables complexes, Fund. Math. 33 (1939), 75–94 (French). MR 57, DOI 10.4064/fm-33-1-75-94
- S. Bergmann and J. Marcinkiewicz, Sur les fonctions analytiques de deux variables complexes, Fund. Math. 33 (1939), 75–94 (French). MR 57, DOI 10.4064/fm-33-1-75-94
- Odile Lecacheux, Unités d’une famille de corps liés à la courbe $X_1(25)$, Ann. Inst. Fourier (Grenoble) 40 (1990), no. 2, 237–253 (French, with English summary). MR 1070827, DOI 10.5802/aif.1212
- Emma Lehmer, Connection between Gaussian periods and cyclic units, Math. Comp. 50 (1988), no. 182, 535–541. MR 929551, DOI 10.1090/S0025-5718-1988-0929551-0
- Sirpa Mäki, The determination of units in real cyclic sextic fields, Lecture Notes in Mathematics, vol. 797, Springer, Berlin, 1980. MR 584794, DOI 10.1007/BFb0088938
- Martinelli, L.: I polinomi di Emma Lehmer, Tesi di Laurea, Università di Trento, February 1997.
- Daniel Shanks, The simplest cubic fields, Math. Comp. 28 (1974), 1137–1152. MR 352049, DOI 10.1090/S0025-5718-1974-0352049-8
- René Schoof, Minus class groups of the fields of the $l$th roots of unity, Math. Comp. 67 (1998), no. 223, 1225–1245. MR 1458225, DOI 10.1090/S0025-5718-98-00939-9
- Emma Lehmer, Connection between Gaussian periods and cyclic units, Math. Comp. 50 (1988), no. 182, 535–541. MR 929551, DOI 10.1090/S0025-5718-1988-0929551-0
- Thaine, F.: Jacobi sums and new families of irreducible polynomials of Gaussian periods, Math. Comp. 70 (2001), 1617–1640.
- F. J. van der Linden, Class number computations of real abelian number fields, Math. Comp. 39 (1982), no. 160, 693–707. MR 669662, DOI 10.1090/S0025-5718-1982-0669662-5
- Lawrence C. Washington, Introduction to cyclotomic fields, 2nd ed., Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1997. MR 1421575, DOI 10.1007/978-1-4612-1934-7
Bibliographic Information
- René Schoof
- Affiliation: Dipartimento di Matematica, $2^{\mathrm {a}}$ Università di Roma “Tor Vergata", I-00133 Roma, Italy
- Email: schoof@science.uva.nl
- Received by editor(s): November 7, 2000
- Received by editor(s) in revised form: July 9, 2001
- Published electronically: February 15, 2002
- © Copyright 2002 American Mathematical Society
- Journal: Math. Comp. 72 (2003), 913-937
- MSC (2000): Primary 11R18, 11Y40
- DOI: https://doi.org/10.1090/S0025-5718-02-01432-1
- MathSciNet review: 1954975