Strong tractability of multivariate integration using quasi–Monte Carlo algorithms
HTML articles powered by AMS MathViewer
- by Xiaoqun Wang;
- Math. Comp. 72 (2003), 823-838
- DOI: https://doi.org/10.1090/S0025-5718-02-01440-0
- Published electronically: June 25, 2002
- PDF | Request permission
Abstract:
We study quasi–Monte Carlo algorithms based on low discrepancy sequences for multivariate integration. We consider the problem of how the minimal number of function evaluations needed to reduce the worst-case error from its initial error by a factor of $\varepsilon$ depends on ${\varepsilon }^{-1}$ and the dimension $s$. Strong tractability means that it does not depend on $s$ and is bounded by a polynomial in ${\varepsilon }^{-1}$. The least possible value of the power of ${\varepsilon }^{-1}$ is called the $\varepsilon$-exponent of strong tractability. Sloan and Woźniakowski established a necessary and sufficient condition of strong tractability in weighted Sobolev spaces, and showed that the $\varepsilon$-exponent of strong tractability is between 1 and 2. However, their proof is not constructive. In this paper we prove in a constructive way that multivariate integration in some weighted Sobolev spaces is strongly tractable with $\varepsilon$-exponent equal to 1, which is the best possible value under a stronger assumption than Sloan and Woźniakowski’s assumption. We show that quasi–Monte Carlo algorithms using Niederreiter’s $(t,s)$-sequences and Sobol sequences achieve the optimal convergence order $O(N^{-1+\delta })$ for any $\delta >0$ independent of the dimension with a worst case deterministic guarantee (where $N$ is the number of function evaluations). This implies that strong tractability with the best $\varepsilon$-exponent can be achieved in appropriate weighted Sobolev spaces by using Niederreiter’s $(t,s)$-sequences and Sobol sequences.References
- P. Hebroni, Sur les inverses des éléments dérivables dans un anneau abstrait, C. R. Acad. Sci. Paris 209 (1939), 285–287 (French). MR 14
- N. S. Bahvalov, Approximate computation of multiple integrals, Vestnik Moskov. Univ. Ser. Mat. Meh. Astr. Fiz. Him. 1959 (1959), no. 4, 3–18 (Russian). MR 115275
- P. Bratley, B. L. Fox and H. Niederreiter, Implementation and tests of low discrepancy sequences, ACM Trans. Model. Comput. Simul., 2 (1992), 195-213.
- R. E. Caflisch, W. Morokoff and A. Owen, Valuation of mortgage backed securities using Brownian bridges to reduce effective dimension, J. Comp. Finance, 1 (1997), 27-46.
- Henri Faure, Discrépance de suites associées à un système de numération (en dimension $s$), Acta Arith. 41 (1982), no. 4, 337–351 (French). MR 677547, DOI 10.4064/aa-41-4-337-351
- J. H. Halton, On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals, Numer. Math. 2 (1960), 84–90. MR 121961, DOI 10.1007/BF01386213
- Fred J. Hickernell, A generalized discrepancy and quadrature error bound, Math. Comp. 67 (1998), no. 221, 299–322. MR 1433265, DOI 10.1090/S0025-5718-98-00894-1
- F. J. Hickernell and X. Wang, The error bounds and tractability of quasi–Monte Carlo algorithms in infinite dimension, Math. Comp., 71 (2002), 1641-1661.
- F. J. Hickernell and H. Woźniakowski, Integration and approximation in arbitrary dimensions, Adv. Comput. Math. 12 (2000), no. 1, 25–58. High dimensional integration. MR 1758946, DOI 10.1023/A:1018948631251
- Rudolf Lidl and Harald Niederreiter, Introduction to finite fields and their applications, Cambridge University Press, Cambridge, 1986. MR 860948
- William J. Morokoff and Russel E. Caflisch, Quasi-random sequences and their discrepancies, SIAM J. Sci. Comput. 15 (1994), no. 6, 1251–1279. MR 1298614, DOI 10.1137/0915077
- Harald Niederreiter, Low-discrepancy and low-dispersion sequences, J. Number Theory 30 (1988), no. 1, 51–70. MR 960233, DOI 10.1016/0022-314X(88)90025-X
- Harald Niederreiter, Random number generation and quasi-Monte Carlo methods, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 63, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. MR 1172997, DOI 10.1137/1.9781611970081
- Harald Niederreiter and Chaoping Xing, Low-discrepancy sequences and global function fields with many rational places, Finite Fields Appl. 2 (1996), no. 3, 241–273. MR 1398076, DOI 10.1006/ffta.1996.0016
- E. Novak and H. Woźniakowski, Intractability results for integration and discrepancy, J. Complexity, 17 (2001), 388-441.
- S. H. Paskov and J. F. Traub, Faster valuation of financial derivatives, J. Portfolio Management, 22 (1995), 113-120.
- Ian H. Sloan and Henryk Woźniakowski, When are quasi-Monte Carlo algorithms efficient for high-dimensional integrals?, J. Complexity 14 (1998), no. 1, 1–33. MR 1617765, DOI 10.1006/jcom.1997.0463
- I. H. Sloan and H. Woźniakowski, Tractability of multivariate integration for weighted Korobov classes, J. Complexity, 17 (2001), 697-721.
- I. M. Sobol′, Distribution of points in a cube and approximate evaluation of integrals, Ž. Vyčisl. Mat i Mat. Fiz. 7 (1967), 784–802 (Russian). MR 219238
- Fritz John, A criterion for univalency brought up to date, Comm. Pure Appl. Math. 29 (1976), no. 3, 293–295. MR 422606, DOI 10.1002/cpa.3160290304
- J. F. Traub and A. G. Werschulz, Complexity and information, Lezioni Lincee. [Lincei Lectures], Cambridge University Press, Cambridge, 1998. MR 1692462, DOI 10.1080/16073606.1997.9631861
- G. W. Wasilkowski and H. Woźniakowski, Weighted tensor product algorithms for linear multivariate problems, J. Complexity 15 (1999), no. 3, 402–447. Dagstuhl Seminar on Algorithms and Complexity for Continuous Problems (1998). MR 1716741, DOI 10.1006/jcom.1999.0512
- H. Woźniakowski, Tractability and strong tractability of linear multivariate problems, J. Complexity 10 (1994), no. 1, 96–128. MR 1263379, DOI 10.1006/jcom.1994.1004
- H. Woźniakowski, Efficiency of quasi–Monte Carlo algorithms for high dimensional integrals, in Monte Carlo and Quasi Monte Carlo Methods 1998 (H. Niederreiter and J. Spanier, eds.), Springer-Verlag, Berlin, 1999, 114-136.
Bibliographic Information
- Xiaoqun Wang
- Affiliation: Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China
- Email: xwang@math.tsinghua.edu.cn
- Received by editor(s): March 7, 2001
- Received by editor(s) in revised form: August 16, 2001
- Published electronically: June 25, 2002
- Additional Notes: Supported by the NSF of China Grants 79970120 and 10001021.
- © Copyright 2002 American Mathematical Society
- Journal: Math. Comp. 72 (2003), 823-838
- MSC (2000): Primary 65C05, 65D30, 68Q25
- DOI: https://doi.org/10.1090/S0025-5718-02-01440-0
- MathSciNet review: 1954970