On the linear independence measure of logarithms of rational numbers
HTML articles powered by AMS MathViewer
- by Qiang Wu;
- Math. Comp. 72 (2003), 901-911
- DOI: https://doi.org/10.1090/S0025-5718-02-01442-4
- Published electronically: June 25, 2002
- PDF | Request permission
Abstract:
In this paper we give a general theorem on the linear independence measure of logarithms of rational numbers and, in particular, the linear independence measure of $1,\log 2, \log 3, \log 5$ and of $1,\log 2, \log 3, \log 5, \log 7$. We also give a method to search for polynomials of smallest norm on a real interval $[a,b]$ which may be suitable for computing or improving the linear independence measure of logarithms of rational numbers.References
- Francesco Amoroso, Sur le diamètre transfini entier d’un intervalle réel, Ann. Inst. Fourier (Grenoble) 40 (1990), no. 4, 885–911 (1991) (French, with English summary). MR 1096596, DOI 10.5802/aif.1240
- Francesco Amoroso, $f$-transfinite diameter and number-theoretic applications, Ann. Inst. Fourier (Grenoble) 43 (1993), no. 4, 1179–1198 (English, with English and French summaries). MR 1252941, DOI 10.5802/aif.1368
- Edward J. Anderson and Peter Nash, Linear programming in infinite-dimensional spaces, Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons, Ltd., Chichester, 1987. Theory and applications; A Wiley-Interscience Publication. MR 893179
- A. Baker and G. Wüstholz, Logarithmic forms and group varieties, J. Reine Angew. Math. 442 (1993), 19–62. MR 1234835, DOI 10.1515/crll.1993.442.19
- Peter Borwein and Tamás Erdélyi, The integer Chebyshev problem, Math. Comp. 65 (1996), no. 214, 661–681. MR 1333305, DOI 10.1090/S0025-5718-96-00702-8
- L. V. Danilov, Rational approximations of some functions at rational points, Mat. Zametki 24 (1978), no. 4, 449–458, 589 (Russian). MR 513647
- V. Flammang, G. Rhin, and C. J. Smyth, The integer transfinite diameter of intervals and totally real algebraic integers, J. Théor. Nombres Bordeaux 9 (1997), no. 1, 137–168 (English, with English and French summaries). MR 1469665, DOI 10.5802/jtnb.193
- Masayoshi Hata, Rational approximations to $\pi$ and some other numbers, Acta Arith. 63 (1993), no. 4, 335–349. MR 1218461, DOI 10.4064/aa-63-4-335-349
- Laurent Habsieger and Bruno Salvy, On integer Chebyshev polynomials, Math. Comp. 66 (1997), no. 218, 763–770. MR 1401941, DOI 10.1090/S0025-5718-97-00829-6
- A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász, Factoring polynomials with rational coefficients, Math. Ann. 261 (1982), no. 4, 515–534. MR 682664, DOI 10.1007/BF01457454
- E. M. Nikišin, Logarithms of natural numbers, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 6, 1319–1327 (Russian). MR 567038
- Georges Rhin, Approximants de Padé et mesures effectives d’irrationalité, Séminaire de Théorie des Nombres, Paris 1985–86, Progr. Math., vol. 71, Birkhäuser Boston, Boston, MA, 1987, pp. 155–164 (French). MR 1017910, DOI 10.1007/978-1-4757-4267-1_{1}1
- Georges Rhin and Philippe Toffin, Approximants de Padé simultanés de logarithmes, J. Number Theory 24 (1986), no. 3, 284–297 (French, with English summary). MR 866974, DOI 10.1016/0022-314X(86)90036-3
- E. A. Rukhadze, A lower bound for the approximation of $\textrm {ln}\,2$ by rational numbers, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 6 (1987), 25–29, 97 (Russian). MR 922879
- C. Viola, On Siegel’s method in Diophantine approximation to transcendental numbers, Rend. Sem. Mat. Univ. Politec. Torino 53 (1995), no. 4, 455–469. Number theory, II (Rome, 1995). MR 1452398
- Michel Waldschmidt, Minorations de combinaisons linéaires de logarithmes de nombres algébriques, Canad. J. Math. 45 (1993), no. 1, 176–224 (French, with English and French summaries). MR 1200327, DOI 10.4153/CJM-1993-010-1
Bibliographic Information
- Qiang Wu
- Affiliation: Département de Mathématique, Université de Metz, Ile du Saulcy, 57045 Metz Cedex 1, France
- Email: wu@poncelet.univ-metz.fr
- Received by editor(s): April 17, 2001
- Received by editor(s) in revised form: September 5, 2001
- Published electronically: June 25, 2002
- © Copyright 2002 American Mathematical Society
- Journal: Math. Comp. 72 (2003), 901-911
- MSC (2000): Primary 11J82, 11J86
- DOI: https://doi.org/10.1090/S0025-5718-02-01442-4
- MathSciNet review: 1954974