The class number one problem for some non-abelian normal CM-fields of degree 48
HTML articles powered by AMS MathViewer
- by Ku-Young Chang and Soun-Hi Kwon;
- Math. Comp. 72 (2003), 1003-1017
- DOI: https://doi.org/10.1090/S0025-5718-02-01443-6
- Published electronically: October 17, 2002
- PDF | Request permission
Abstract:
We prove that there is precisely one normal CM-field of degree 48 with class number one which has a normal CM-subfield of degree 16: the narrow Hilbert class field of $\mathbb {Q}(\sqrt {5}, \sqrt {101}, \theta )$ with $\theta ^3 - \theta ^2 -5 \theta -1=0$.References
- P. E. Conner and J. Hurrelbrink, Class number parity, Series in Pure Mathematics, vol. 8, World Scientific Publishing Co., Singapore, 1988. MR 963648, DOI 10.1142/0663
- Ku-Young Chang and Soun-Hi Kwon, Class numbers of imaginary abelian number fields, Proc. Amer. Math. Soc. 128 (2000), no. 9, 2517–2528. MR 1707511, DOI 10.1090/S0002-9939-00-05555-6
- K.-Y. Chang and S.-H. Kwon, CM-fields of degree $2pq$, preprint.
- K.-Y. Chang and S.-H. Kwon, The non-abelian normal CM-fields of degree $36$ with class number one, Acta Arith., 101 (2002), 53-61.
- Jeffrey Hoffstein, Some analytic bounds for zeta functions and class numbers, Invent. Math. 55 (1979), no. 1, 37–47. MR 553994, DOI 10.1007/BF02139701
- Kuniaki Horie, On a ratio between relative class numbers, Math. Z. 211 (1992), no. 3, 505–521. MR 1190225, DOI 10.1007/BF02571442
- Gordon James and Martin Liebeck, Representations and characters of groups, Cambridge Mathematical Textbooks, Cambridge University Press, Cambridge, 1993. MR 1237401
- M. Daberkow, C. Fieker, J. Klüners, M. Pohst, K. Roegner, M. Schörnig, and K. Wildanger, KANT V4, J. Symbolic Comput. 24 (1997), no. 3-4, 267–283. Computational algebra and number theory (London, 1993). MR 1484479, DOI 10.1006/jsco.1996.0126
- Yann Lefeuvre, Corps diédraux à multiplication complexe principaux, Ann. Inst. Fourier (Grenoble) 50 (2000), no. 1, 67–103 (French, with English and French summaries). MR 1762338, DOI 10.5802/aif.1747
- F. Lemmermeyer, S. Louboutin, and R. Okazaki, The class number one problem for some non-abelian normal CM-fields of degree 24, J. Théor. Nombres Bordeaux 11 (1999), no. 2, 387–406 (English, with English and French summaries). MR 1745886, DOI 10.5802/jtnb.257
- Stéphane Louboutin and Ryotaro Okazaki, Determination of all non-normal quartic CM-fields and of all non-abelian normal octic CM-fields with class number one, Acta Arith. 67 (1994), no. 1, 47–62. MR 1292520, DOI 10.4064/aa-67-1-47-62
- Stéphane Louboutin and Ryotaro Okazaki, The class number one problem for some non-abelian normal CM-fields of $2$-power degrees, Proc. London Math. Soc. (3) 76 (1998), no. 3, 523–548. MR 1616805, DOI 10.1112/S0024611598000318
- Stéphane Louboutin, Ryotaro Okazaki, and Michel Olivier, The class number one problem for some non-abelian normal CM-fields, Trans. Amer. Math. Soc. 349 (1997), no. 9, 3657–3678. MR 1390044, DOI 10.1090/S0002-9947-97-01768-6
- Stéphane Louboutin, Determination of all quaternion octic CM-fields with class number $2$, J. London Math. Soc. (2) 54 (1996), no. 2, 227–238. MR 1405052, DOI 10.1112/jlms/54.2.227
- K. M. Èminyan, On a binary problem, Mat. Zametki 60 (1996), no. 4, 634–637 (Russian); English transl., Math. Notes 60 (1996), no. 3-4, 478–481 (1997). MR 1619424, DOI 10.1007/BF02305438
- Stéphane Louboutin, The class number one problem for the non-abelian normal CM-fields of degree $16$, Acta Arith. 82 (1997), no. 2, 173–196. MR 1477509, DOI 10.4064/aa-82-2-173-196
- Stéphane Louboutin, The class number one problem for the dihedral and dicyclic CM-fields, Colloq. Math. 80 (1999), no. 2, 259–265. MR 1703822, DOI 10.4064/cm-80-2-259-265
- Stéphane Louboutin, Computation of relative class numbers of CM-fields by using Hecke $L$-functions, Math. Comp. 69 (2000), no. 229, 371–393. MR 1648395, DOI 10.1090/S0025-5718-99-01096-0
- Stéphane Louboutin, Fast computation of relative class numbers of CM-fields, Algorithmic number theory (Leiden, 2000) Lecture Notes in Comput. Sci., vol. 1838, Springer, Berlin, 2000, pp. 413–422. MR 1850622, DOI 10.1007/10722028_{2}6
- S. Louboutin and Y.-H. Park, Class number problems for dicyclic CM-fields, Publ. Math. Debrecen 57 (2000), no. 3-4, 283–295. MR 1798714, DOI 10.5486/pmd.2000.2165
- S. Louboutin and Y.-H. Park, The Class number one problem for the non-abelian normal CM-fields of degree $42$, preprint.
- Stéphane Louboutin, Young-Ho Park, and Yann Lefeuvre, Construction of the real dihedral number fields of degree $2p$. Applications, Acta Arith. 89 (1999), no. 3, 201–215. MR 1691851, DOI 10.4064/aa-89-3-201-215
- John Myron Masley, Class numbers of real cyclic number fields with small conductor, Compositio Math. 37 (1978), no. 3, 297–319. MR 511747
- Sirpa Mäki, The determination of units in real cyclic sextic fields, Lecture Notes in Mathematics, vol. 797, Springer, Berlin, 1980. MR 584794, DOI 10.1007/BFb0088938
- Jacques Martinet, Sur l’arithmétique des extensions galoisiennes à groupe de Galois diédral d’ordre $2p$, Ann. Inst. Fourier (Grenoble) 19 (1969), no. fasc. 1, 1–80, ix (French, with English summary). MR 262210, DOI 10.5802/aif.307
- A. M. Odlyzko, Some analytic estimates of class numbers and discriminants, Invent. Math. 29 (1975), no. 3, 275–286. MR 376613, DOI 10.1007/BF01389854
- Ryotaro Okazaki, Inclusion of CM-fields and divisibility of relative class numbers, Acta Arith. 92 (2000), no. 4, 319–338. MR 1760241, DOI 10.4064/aa-92-4-319-338
- Y.-H. Park, The class number one problem for the non-abelian normal CM-fields of degree $24$ and $40$, Acta Arith., 101 (2002), 63-80.
- C. Batut, K. Belabas, D. Bernardi, H. Cohen, M. Olivier, Pari-GP version $2.0.11$.
- Young-Ho Park and Soun-Hi Kwon, Determination of all non-quadratic imaginary cyclic number fields of $2$-power degree with relative class number $\le 20$, Acta Arith. 83 (1998), no. 3, 211–223. MR 1611205, DOI 10.4064/aa-83-3-211-223
- S.-M. Park and S.-H. Kwon, The class number one problem for normal CM-fields of degree $32$ II, preprint.
- Lawrence C. Washington, Introduction to cyclotomic fields, 2nd ed., Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1997. MR 1421575, DOI 10.1007/978-1-4612-1934-7
- Ken Yamamura, The determination of the imaginary abelian number fields with class number one, Math. Comp. 62 (1994), no. 206, 899–921. MR 1218347, DOI 10.1090/S0025-5718-1994-1218347-3
- Hee-Sun Yang and Soun-Hi Kwon, The non-normal quartic CM-fields and the octic dihedral CM-fields with relative class number two, J. Number Theory 79 (1999), no. 2, 175–193. MR 1728146, DOI 10.1006/jnth.1999.2421
- H.-S. Yang, S.-M. Park and S.-H. Kwon, Class number one problem for normal CM-fields of degree $32$, preprint.
Bibliographic Information
- Ku-Young Chang
- Affiliation: Information Security Basic Research Team, ETRI, 161 Kajong-dong, Yusong-Gu, 305-350, Taejon, Korea
- Email: jang1090@etri.re.kr
- Soun-Hi Kwon
- Affiliation: Department of Mathematics Education, Korea University, 136-701, Seoul, Korea
- Email: shkwon@semi.korea.ac.kr
- Received by editor(s): March 24, 2000
- Received by editor(s) in revised form: December 26, 2000, May 2, 2001, and September 5, 2001
- Published electronically: October 17, 2002
- © Copyright 2002 American Mathematical Society
- Journal: Math. Comp. 72 (2003), 1003-1017
- MSC (2000): Primary 11R29; Secondary 11R21
- DOI: https://doi.org/10.1090/S0025-5718-02-01443-6
- MathSciNet review: 1954981