Near optimality of the sinc approximation
HTML articles powered by AMS MathViewer
- by Masaaki Sugihara;
- Math. Comp. 72 (2003), 767-786
- DOI: https://doi.org/10.1090/S0025-5718-02-01451-5
- Published electronically: June 4, 2002
- PDF | Request permission
Abstract:
Near optimality of the sinc approximation is established in a variety of spaces of functions analytic in a strip region about the real axis, each space being characterized by the decay rate of their elements (functions) in the neighborhood of the infinity.References
- Milton Abramowitz and Irene A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, No. 55, U. S. Government Printing Office, Washington, DC, 1964. For sale by the Superintendent of Documents. MR 167642
- Jan-Erik Andersson, Optimal quadrature of $H^{p}$ functions, Math. Z. 172 (1980), no. 1, 55–62. MR 576296, DOI 10.1007/BF01182779
- S. N. Bernstein, Sur la meilleure approximation de $|x|^{p}$ par des polynômes de degrées très élevés, Bull. Acad. Sci. USSR, Cl. Sci. Math. Nat. 2 (1938), 181–190.
- H. G. Burchard and K. Höllig, $N$-width and entropy of $H_p$-classes in $L_q(-1,1)$, SIAM J. Math. Anal. 16 (1985), no. 2, 405–421. MR 777476, DOI 10.1137/0516029
- R. DeVore and K. Scherer, Variable knot, variable degree spline approximation to $x^{\beta }$, Quantitative approximation (Proc. Internat. Sympos., Bonn, 1979) Academic Press, New York-London, 1980, pp. 121–131. MR 588175
- Tord Ganelius, Rational approximation in the complex plane and on the line, Ann. Acad. Sci. Fenn. Ser. A I Math. 2 (1976), 129–145. MR 499176, DOI 10.5186/aasfm.1976.0211
- K. L. Bowers and J. Lund (eds.), Computation and control. II, Progress in Systems and Control Theory, vol. 11, Birkhäuser Boston, Inc., Boston, MA, 1991. MR 1140009, DOI 10.1007/978-1-4612-0427-5
- Fritz Keinert, Uniform approximation to $|x|^\beta$ by sinc functions, J. Approx. Theory 66 (1991), no. 1, 44–52. MR 1113577, DOI 10.1016/0021-9045(91)90054-E
- Marek A. Kowalski, Krzysztof A. Sikorski, and Frank Stenger, Selected topics in approximation and computation, Oxford University Press, New York, 1995. MR 1418861, DOI 10.1093/oso/9780195080599.001.0001
- John Lund and Kenneth L. Bowers, Sinc methods for quadrature and differential equations, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. MR 1171217, DOI 10.1137/1.9781611971637
- Masatake Mori and Masaaki Sugihara, The double-exponential transformation in numerical analysis, J. Comput. Appl. Math. 127 (2001), no. 1-2, 287–296. Numerical analysis 2000, Vol. V, Quadrature and orthogonal polynomials. MR 1808579, DOI 10.1016/S0377-0427(00)00501-X
- Donald J. Newman, Quadrature formulae for $H^{p}$ functions, Math. Z. 166 (1979), no. 2, 111–115. MR 525614, DOI 10.1007/BF01214036
- John R. Rice, On the degree of convergence of nonlinear spline approximation, Approximations with Special Emphasis on Spline Functions (Proc. Sympos. Univ. of Wisconsin, Madison, Wis., 1969) Academic Press, New York-London, 1969, pp. 349–365. MR 267324
- Frank Stenger, Optimal convergence of minimum norm approximations in $H_{p}$, Numer. Math. 29 (1977/78), no. 4, 345–362. MR 483329, DOI 10.1007/BF01432874
- Frank Stenger, Numerical methods based on Whittaker cardinal, or sinc functions, SIAM Rev. 23 (1981), no. 2, 165–224. MR 618638, DOI 10.1137/1023037
- Frank Stenger, Explicit, nearly optimal, linear rational approximation with preassigned poles, Math. Comp. 47 (1986), no. 175, 225–252. MR 842132, DOI 10.1090/S0025-5718-1986-0842132-0
- Frank Stenger, Numerical methods based on sinc and analytic functions, Springer Series in Computational Mathematics, vol. 20, Springer-Verlag, New York, 1993. MR 1226236, DOI 10.1007/978-1-4612-2706-9
- Frank Stenger, Summary of Sinc numerical methods, J. Comput. Appl. Math. 121 (2000), no. 1-2, 379–420. Numerical analysis in the 20th century, Vol. I, Approximation theory. MR 1780056, DOI 10.1016/S0377-0427(00)00348-4
- Masaaki Sugihara, Optimality of the double exponential formula—functional analysis approach, Numer. Math. 75 (1997), no. 3, 379–395. MR 1427714, DOI 10.1007/s002110050244
- Hidetosi Takahasi and Masatake Mori, Double exponential formulas for numerical integration, Publ. Res. Inst. Math. Sci. 9 (1973/74), 721–741. MR 347061, DOI 10.2977/prims/1195192451
- Guang Gui Ding, On almost isometries from $L^1(\mu )$ into $L^\infty (\nu )$ or $C_b(\Delta )$, Acta Math. Sci. (English Ed.) 12 (1992), no. 3, 308–311. MR 1207442, DOI 10.1016/S0252-9602(18)30164-4
Bibliographic Information
- Masaaki Sugihara
- Affiliation: Department of Computational Science and Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Email: sugihara@na.cse.nagoya-u.ac.jp
- Received by editor(s): July 10, 2000
- Received by editor(s) in revised form: August 27, 2001
- Published electronically: June 4, 2002
- Additional Notes: The author was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Sports, Culture and Science, and by the Japan Society for Promotion of Science.
- © Copyright 2002 American Mathematical Society
- Journal: Math. Comp. 72 (2003), 767-786
- MSC (2000): Primary 41A30, 41A25, 65D15
- DOI: https://doi.org/10.1090/S0025-5718-02-01451-5
- MathSciNet review: 1954967