Constructing complete tables of quartic fields using Kummer theory
HTML articles powered by AMS MathViewer
- by Henri Cohen, Francisco Diaz y Diaz and Michel Olivier;
- Math. Comp. 72 (2003), 941-951
- DOI: https://doi.org/10.1090/S0025-5718-02-01452-7
- Published electronically: June 13, 2002
- PDF | Request permission
Abstract:
We explain how to construct tables of quartic fields of discriminant less than or equal to a given bound in an efficient manner using Kummer theory, instead of the traditional (and much less efficient) method using the geometry of numbers. As an application, we describe the computation of quartic fields of discriminant up to $10^7$, the corresponding table being available by anonymous ftp.References
- K. Belabas, A fast algorithm to compute cubic fields, Math. Comp. 66 (1997), no. 219, 1213–1237. MR 1415795, DOI 10.1090/S0025-5718-97-00846-6
- A.-M. Bergé, J. Martinet, and M. Olivier, The computation of sextic fields with a quadratic subfield, Math. Comp. 54 (1990), no. 190, 869–884. MR 1011438, DOI 10.1090/S0025-5718-1990-1011438-8
- M. Bhargava, Gauss Composition and Generalizations, Proceedings ANTS V, Sydney (2002), Lecture Notes in Comp. Sci., Springer-Verlag (2002), to appear.
- Johannes Buchmann and David Ford, On the computation of totally real quartic fields of small discriminant, Math. Comp. 52 (1989), no. 185, 161–174. MR 946599, DOI 10.1090/S0025-5718-1989-0946599-1
- Johannes Buchmann, David Ford, and Michael Pohst, Enumeration of quartic fields of small discriminant, Math. Comp. 61 (1993), no. 204, 873–879. MR 1176706, DOI 10.1090/S0025-5718-1993-1176706-0
- Henri Cohen, A course in computational algebraic number theory, Graduate Texts in Mathematics, vol. 138, Springer-Verlag, Berlin, 1993. MR 1228206, DOI 10.1007/978-3-662-02945-9
- Henri Cohen, Advanced topics in computational number theory, Graduate Texts in Mathematics, vol. 193, Springer-Verlag, New York, 2000. MR 1728313, DOI 10.1007/978-1-4419-8489-0
- H. Cohen, F. Diaz y Diaz and M. Olivier, Density of number field discriminants, in preparation.
- —, Construction of tables of quartic fields, Proceedings ANTS IV, Leiden (2000), Lecture Notes in Comp. Sci. 1838, Springer-Verlag (2000), 257–268.
- H. Cohen, F. Diaz y Diaz, and M. Olivier, Tables of octic fields with a quartic subfield, Math. Comp. 68 (1999), no. 228, 1701–1716. MR 1642813, DOI 10.1090/S0025-5718-99-01074-1
- H. Cohen, F. Diaz y Diaz, and M. Olivier, Computing ray class groups, conductors and discriminants, Math. Comp. 67 (1998), no. 222, 773–795. MR 1443117, DOI 10.1090/S0025-5718-98-00912-0
- —, Enumerating quartic dihedral extensions of $\mathbb {Q}$, Compositio Math., to appear.
- —, Counting discriminants of number fields, in preparation.
- H. Davenport and H. Heilbronn, On the density of discriminants of cubic fields, Bull. London Math. Soc. 1 (1969), 345–348. MR 254010, DOI 10.1112/blms/1.3.345
- H. Davenport and H. Heilbronn, On the density of discriminants of cubic fields. II, Proc. Roy. Soc. London Ser. A 322 (1971), no. 1551, 405–420. MR 491593, DOI 10.1098/rspa.1971.0075
- D. Ford, Enumeration of totally complex quartic fields of small discriminant, Computational number theory (Debrecen, 1989) de Gruyter, Berlin, 1991, pp. 129–138. MR 1151860
- M. Olivier, The computation of sextic fields with a cubic subfield and no quadratic subfield, Math. Comp. 58 (1992), no. 197, 419–432. MR 1106977, DOI 10.1090/S0025-5718-1992-1106977-7
- A. Yukie, Density theorems related to prehomogenous vector spaces, preprint in English; also in Swikaisekikenkiyosho Kokyuroku, No. 1173 (2000), 171–183 (Japanese).
Bibliographic Information
- Henri Cohen
- Affiliation: Laboratoire A2X, U.M.R. 5465 du C.N.R.S., Université Bordeaux I, 351 Cours de la Libération, 33405 Talence Cedex, France
- Email: cohen@math.u-bordeaux.fr
- Francisco Diaz y Diaz
- Affiliation: Laboratoire A2X, U.M.R. 5465 du C.N.R.S., Université Bordeaux I, 351 Cours de la Libération, 33405 Talence Cedex, France
- Email: diaz@math.u-bordeaux.fr
- Michel Olivier
- Affiliation: Laboratoire A2X, U.M.R. 5465 du C.N.R.S., Université Bordeaux I, 351 Cours de la Libération, 33405 Talence Cedex, France
- Email: olivier@math.u-bordeaux.fr
- Received by editor(s): October 18, 2000
- Received by editor(s) in revised form: September 26, 2001
- Published electronically: June 13, 2002
- © Copyright 2002 American Mathematical Society
- Journal: Math. Comp. 72 (2003), 941-951
- MSC (2000): Primary 11Y40, 11R16, 11R29
- DOI: https://doi.org/10.1090/S0025-5718-02-01452-7
- MathSciNet review: 1954977