Nontrivial Galois module structure of cyclotomic fields
HTML articles powered by AMS MathViewer
- by Marc Conrad and Daniel R. Replogle;
- Math. Comp. 72 (2003), 891-899
- DOI: https://doi.org/10.1090/S0025-5718-02-01457-6
- Published electronically: June 4, 2002
- PDF | Request permission
Abstract:
We say a tame Galois field extension $L/K$ with Galois group $G$ has trivial Galois module structure if the rings of integers have the property that $\mathcal {O}_{L}$ is a free $\mathcal {O}_{K}[G]$-module. The work of Greither, Replogle, Rubin, and Srivastav shows that for each algebraic number field other than the rational numbers there will exist infinitely many primes $l$ so that for each there is a tame Galois field extension of degree $l$ so that $L/K$ has nontrivial Galois module structure. However, the proof does not directly yield specific primes $l$ for a given algebraic number field $K.$ For $K$ any cyclotomic field we find an explicit $l$ so that there is a tame degree $l$ extension $L/K$ with nontrivial Galois module structure.References
- Shih-Ping Chan and Chong-Hai Lim, Relative Galois module structure of rings of integers of cyclotomic fields, J. Reine Angew. Math. 434 (1993), 205–220. MR 1195696, DOI 10.1515/crll.1993.434.205
- Marc Conrad, Construction of bases for the group of cyclotomic units, J. Number Theory 81 (2000), no. 1, 1–15. MR 1743507, DOI 10.1006/jnth.1999.2443
- Albrecht Fröhlich, Galois module structure of algebraic integers, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 1, Springer-Verlag, Berlin, 1983. MR 717033, DOI 10.1007/978-3-642-68816-4
- Cornelius Greither, Daniel R. Replogle, Karl Rubin, and Anupam Srivastav, Swan modules and Hilbert-Speiser number fields, J. Number Theory 79 (1999), no. 1, 164–173. MR 1718724, DOI 10.1006/jnth.1999.2425
- T. Kohl and D. R. Replogle, Computation of several Cyclotomic Swan Subgroups, Math. Comp., 71 (2002), 343-348.
- Henry B. Mann, On integral bases, Proc. Amer. Math. Soc. 9 (1958), 167–172. MR 93502, DOI 10.1090/S0002-9939-1958-0093502-7
- Leon R. McCulloh, Galois module structure of elementary abelian extensions, J. Algebra 82 (1983), no. 1, 102–134. MR 701039, DOI 10.1016/0021-8693(83)90176-X
- Leon R. McCulloh, Galois module structure of abelian extensions, J. Reine Angew. Math. 375/376 (1987), 259–306. MR 882300, DOI 10.1515/crll.1987.375-376.259
- I. Reiner and S. Ullom, A Mayer-Vietoris sequence for class groups, J. Algebra 31 (1974), 305–342. MR 349828, DOI 10.1016/0021-8693(74)90072-6
- Daniel R. Replogle, Swan modules and realisable classes for Kummer extensions of prime degree, J. Algebra 212 (1999), no. 2, 482–494. MR 1676851, DOI 10.1006/jabr.1998.7652
- D. R. Replogle, Cyclotomic Swan subgroups and irregular indices, Rocky Mountain Journal Math. 31 (Summer 2001), 611-618.
- D. R. Replogle and R. G. Underwood, Nontrivial tame extensions over Hopf orders, Acta Arithmetica (to appear).
- The SIMATH group/H. G. Zimmer, SIMATH: A computer algebra system for algebraic number theory, www.simath.info.
- W. Sinnott, On the Stickelberger ideal and the circular units of a cyclotomic field, Ann. of Math. (2) 108 (1978), no. 1, 107–134. MR 485778, DOI 10.2307/1970932
- Stephen V. Ullom, Nontrivial lower bounds for class groups of integral group rings, Illinois J. Math. 20 (1976), no. 2, 361–371. MR 393214
- Lawrence C. Washington, Introduction to cyclotomic fields, Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1982. MR 718674, DOI 10.1007/978-1-4684-0133-2
Bibliographic Information
- Marc Conrad
- Affiliation: Faculty of Technology, Southampton Institute, East Park Terrace, Southampton, S014 0YN Great Britain
- Email: marc@pension-perisic.de
- Daniel R. Replogle
- Affiliation: Department of Mathematics and Computer Science, College of Saint Elizabeth, 2 Convent Road, Morristown, New Jersey 07960
- Email: dreplogle@cse.edu
- Received by editor(s): November 6, 2000
- Received by editor(s) in revised form: July 15, 2001
- Published electronically: June 4, 2002
- © Copyright 2002 American Mathematical Society
- Journal: Math. Comp. 72 (2003), 891-899
- MSC (2000): Primary 11R33, 11R29; Secondary 11R27, 11R18
- DOI: https://doi.org/10.1090/S0025-5718-02-01457-6
- MathSciNet review: 1954973