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ENHANCED ACCURACY BY POST-PROCESSING
FOR FINITE ELEMENT METHODS

FOR HYPERBOLIC EQUATIONS

BERNARDO COCKBURN, MITCHELL LUSKIN, CHI-WANG SHU, AND ENDRE SÜLI

Abstract. We consider the enhancement of accuracy, by means of a simple
post-processing technique, for finite element approximations to transient hy-
perbolic equations. The post-processing is a convolution with a kernel whose
support has measure of order one in the case of arbitrary unstructured meshes;
if the mesh is locally translation invariant, the support of the kernel is a cube
whose edges are of size of the order of ∆x only. For example, when polynomi-
als of degree k are used in the discontinuous Galerkin (DG) method, and the
exact solution is globally smooth, the DG method is of order k + 1/2 in the
L2-norm, whereas the post-processed approximation is of order 2k + 1; if the
exact solution is in L2 only, in which case no order of convergence is available
for the DG method, the post-processed approximation converges with order
k + 1/2 in L2(Ω0), where Ω0 is a subdomain over which the exact solution
is smooth. Numerical results displaying the sharpness of the estimates are
presented.

1. Introduction

In this paper, we consider general finite element methods for time-dependent
linear hyperbolic systems of the form

ut +
d∑
j=1

Aj uxj +A0 u = 0, (x, t) ∈ Rd × (0, T ],

u(x, 0) = u0(x), x ∈ Rd,
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where {Aj}dj=1 are real, constant coefficient m×m matrices such that
∑d

j=1 Ajξj
has real eigenvalues and a complete set of linearly independent eigenvectors for all
ξ ∈ Rd, and the function u has range in Rm. Our aim in this paper is to show how
to exploit the inherently oscillatory nature of numerical solutions to this problem
computed by means of finite element methods to enhance the quality of the approxi-
mation. This enhancement is achieved by post-processing the approximate solution
only once, at the very end of the computation, at t = T . The post-processing con-
sidered here is completely independent of the partial differential equation under
consideration and can be performed for entirely arbitrary triangulations; however,
it takes a particularly simple and computationally efficient form when the triangu-
lation is locally translation invariant.

To illustrate the basic idea, let us consider the following simple model problem:

ut + ux = 0, in (0, 1)× (0, T ), u(x, 0) = sin(2πx) for x ∈ (0, 1),

subject to periodic boundary conditions, and let us compute an approximation U
to its solution u by using the discontinuous Galerkin (DG) method with piece-
wise polynomials of degree one over uniform grids of spacing h. We also consider
the post-processed approximation U? = K4,2

h ? U , where the convolution kernel
K4,2
h (x) = 1

hK
4,2(x/h) is defined by

K4,2(y) = − 1
12
ψ(2)(y − 1) +

7
6
ψ(2)(y)− 1

12
ψ(2)(y + 1),

where ψ(2) is the B-spline obtained by convolving the characteristic function ψ(1) =
χ of the interval (−1/2, 1/2) with itself once. In Figure 1.1 we display, for T =
0.1 and h = 1/10 and h = 1/20, the errors x 7→ u(T, x) − U(T, x) and x 7→
u(T, x)− U?(T, x). The time-step was chosen so small that the overall accuracy of
the method is dominated by the spatial error. We note the oscillatory nature of
the error x 7→ u(T, x)−U(T, x) typical of finite element methods and the apparent
superconvergence of the numerical solution at the two Gauss-Radau points, a fact
discovered in 1995 by Adjerid, Aiffa, and Flaherty [2]; see also their recent work
[1]. In contrast with this behavior, we observe the complete absence of oscilla-
tions from the error u(T ) − U?(T ). This shows that convolving the approximate
solution U with the kernel K4,2

h filters out the numerical oscillations around the
exact solution. Moreover, the result of such a filtering is a new approximation U?

that converges faster to u than U . Indeed, in Figure 1.2, we display the functions
x 7→ log( |u(T, x) − U(T, x) | ), for h = 1/10, 1/20, 1/40 and 1/80; we observe that
each time h is halved, the maximum of x 7→ |u(T, x) − U?(T, x) | is divided by a
factor not less than eight. This indicates that the post-processed approximation is
at least third-order convergent; the original approximate solution U exhibits only
second-order convergence.

In Figures 1.3 and 1.4 we repeat the above experiment using polynomials of
degree two. Again we observe the oscillatory nature of the approximation and the
superconvergence at the three Gauss-Radau points in Figure 1.3 (top), and that
the oscillations are filtered out upon convolution in Figure 1.3 (bottom). This time,
the convolution kernel K6,3

h (x) = 1
hK

6,3(x/h) is defined by

K6,3(y) =
37

1920
ψ(4)(y − 2)− 97

480
ψ(4)(y − 1)− 437

320
ψ(4)(y)

− 97
480

ψ(4)(y + 1) +
37

1920
ψ(4)(y + 2),
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Figure 1.1. The errors u − U (solid line) and u − U? (dots) at
T = 0.1 for h = 1/10 (top) and h = 1/20 (bottom). The function
u is the smooth exact solution, U is the approximation given by
the DG method with polynomials of degree one, and U? = K4,2

h ?U .

where ψ(4) is the B-spline obtained by convolving the characteristic function ψ(1) =
χ of the interval (−1/2, 1/2) with itself three times. In Figure 1.4, we see that each
time h is halved, the maximum error decreases by a factor not less than thirty two.
This shows that the error in the post-processed approximation is of fifth order.

In connection with this fact, we note here that in 1996 Lowrie [18] found an-
alytical and numerical evidence that when polynomials of degree k are used, a
“component of the error” of the DG method converges with order 2 k+1 in the L2-
norm. This fact stands in striking contrast with convergence of order k+1/2 for the
underlying DG approximation (k+ 1 for the one-dimensional case and special grids
in several space dimensions). In this paper, we provide a firm mathematical basis
for this observation, and show how to compute the superconvergent approximation
U? by a simple post-processing technique which is independent of the equation and
of the numerical method.

The paper is organized as follows. In Section 2 we present a brief account of the
development of the ideas behind this paper. In Section 3 we state and discuss our
main theoretical results, and in Section 4 we present their proofs. In Section 5 we
display numerical experiments which not only verify our theoretical results but also



580 B. COCKBURN, M. LUSKIN, C.-W. SHU, AND E. SÜLI

Figure 1.2. The errors log(|u − U? |) at T = 0.1 for h = 1/10
(top), h = 1/20, h = 1/40, and h = 1/80 (bottom). Each time h
is halved, the maximum error decreases by a factor not less than
8; the order of convergence is, therefore, not less than 3.

Figure 1.3. The errors u − U (solid line) and u − U? (dots) at
T = 0.1 for h = 1/10 (top) and h = 1/20 (bottom). The function
u is the smooth exact solution, U is the approximation given by
the DG method with polynomials of degree two, and U? = K6,3

h ?U .
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Figure 1.4. The errors log(|u − U? |) at T = 0.1 for h = 1/10
(top), h = 1/20, h = 1/40, and h = 1/80 (bottom). Each time h
is halved, the maximum error decreases by a factor not less than
32; the order of convergence is, therefore, not less than 5.

indicate how this kind of post-processing can be applied to convection-diffusion and
nonlinear problems. We conclude, in Section 6, with some remarks.

2. A brief overview of the development

of post-processing techniques

In order to introduce the basic ideas of our work and to put them into proper per-
spective, we briefly review the development of post-processing techniques devised
to improve the quality of numerical approximations. For further detail the reader
should consult the monograph of Wahlbin [24] on superconvergence in Galerkin
finite element methods.

2.1. Finite difference and spectral methods for hyperbolic problems. In
1977, Majda and Osher [20] considered formally high-order accurate dissipative
difference schemes for hyperbolic problems. They studied a one-dimensional model
problem of a two-by-two hyperbolic system whose characteristics are parallel to
x = ±t; the initial condition is a step function whose discontinuity is located at
the origin. Majda and Osher showed that the rate of convergence on the region
between the characteristics issuing from the origin, |x/t | < 1 − δ2, is independent
of the numerical scheme. They pointed out that in 1962 Fedorenko [12] and in
1969 Apelkrans [3] displayed numerical evidence that the order of convergence had
to be one. However, by selecting a suitable approximation of the initial datum,
Majda and Osher showed that the order of convergence can be increased to two.
Moreover, they found that they could recover the full formal order of accuracy of
the scheme on the region |x/t | < 1− δ2 provided they preprocessed the initial data
in an appropriate way. In 1986, Johnson and Pitkäranta [16] used a similar idea
in the analysis of the DG method for linear hyperbolic problems. The question
of post-processing the initial data is considered in the book of Brenner, Thomée
and Wahlbin [6]; see also the work of Jovanović, Ivanović and Süli [17] concerning
the use of convolution mollifiers with B-spline kernels for second-order hyperbolic
boundary value problems with nonsmooth data.
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In 1978, Mock and Lax [21] showed that for a difference scheme of any formal
order of accuracy µ, for linear hyperbolic systems, the moments of the exact so-
lution converge with order µ provided that, again, the initial data was suitably
preprocessed. This result holds even if the exact solution contains discontinuities.
They also showed how to post-process the approximate solution by a simple convo-
lution to enhance its accuracy over regions of smoothness of the exact solution: if
the solution was sufficiently smooth locally, they could obtain nearly the full order
of convergence µ provided that the support of the kernel was of order almost one.
This seems to have been the first instance when the ideas of (i) preprocessing the
initial data, (ii) obtaining error estimates for the moments, and (iii) post-processing
the approximation, appear clearly delineated.

Later, in 1985, Gottlieb and Tadmor [13], motivated by the work of Mock and
Lax [21], found a spectrally accurate post-processing kernel for spectral methods;
see also the 1978 paper by Majda, McDonough and Osher [19]. Again, the full
spectral accuracy could be recovered by using a convolution; the measure of the
support of the kernel had to be of order one.

2.2. Finite element methods for elliptic and parabolic problems. Quite
independently of the developments reviewed above, in 1977 Bramble and Schatz
[5] considered linear elliptic problems and showed how to post-process the finite
element solution by means of a simple convolution to enhance the quality of the
approximation. They showed that the order of convergence could be doubled if
the exact solution was locally smooth. In 1977, Thomée [22] extended the work of
Bramble and Schatz [5] to include superconvergence of the derivatives and gave an
elegant proof of their approximation results by using Fourier analysis. In 1980, he
also extended these results [23] to semidiscrete Galerkin finite element methods for
parabolic problems.

It is important to point out that, just like Mock and Lax, Bramble and Schatz
proved a negative-order norm error estimate (an error estimate of the moments
in Mock and Lax’s terminology) and then showed how to use it to enhance the
approximation by a convolution. However, unlike Mock and Lax’s convolution
kernel, for locally translation invariant grids the Bramble-Schatz kernel has support
in a cube whose diameter is of order h only; this fact represents a considerable
advantage from the computational point of view.

In 1981, Johnson and Nävert [15] applied this technique to steady-state advec-
tion-diffusion problems with small diffusion; they considered the standard Galerkin
and the streamline-diffusion methods. An application of this technique to the sim-
ulation of miscible displacement was devised and analyzed in 1985 by Douglas [10].
Other applications can be found in the book of Wahlbin [24].

2.3. The main ideas. It seems that the first (and only) attempt to apply this
technique to finite element methods for hyperbolic problems was carried out in 1993
by Bales [4] who considered a fourth-order accurate finite element method applied
to the one-dimensional wave equation. In this paper, we apply in a systematic way
the ideas of Mock and Lax [21] and Bramble and Schatz [5] to enhance the accuracy
of finite element approximations to hyperbolic problems by post-processing.

We proceed as follows. First, we obtain an estimate of the error between the
analytical solution u and the post-processed numerical approximation U in terms
of negative-order Sobolev norms of u − U . This result does not depend on the
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partial differential equation under consideration or on the numerical scheme. Next,
we obtain negative-order norm a priori estimates for the error between the exact
solution of a hyperbolic problem and its finite element approximation U . The final
error estimate is then obtained by combining the above bounds.

3. The results

In this section, we present and discuss our main theoretical results.

3.1. An approximation result. We begin by presenting a result that relates
negative-order norm a priori estimates of the difference between u and an arbitrary
approximation U for u to L2-error estimates of the difference between u and the
post-processed counterpart U .

Let us recall the definition of a negative-order Sobolev norm on an open set
Ω ⊂ Rd. We denote by ‖ u ‖0,Ω the standard L2-norm of u on Ω. For any natural
number `, we consider the norm and seminorm of the Sobolev space H`(Ω), defined
by

‖ u ‖`,Ω =
{ ∑
|α|≤`

‖Dαu ‖20,Ω
}1/2

, |u |`,Ω =
{ ∑
|α|=`

‖Dαu ‖20,Ω
}1/2

.

Sobolev norms and seminorms for vector-valued functions from H`(Ω,Rm) are de-
fined analogously and are denoted by the same symbol as in the scalar case. We
then define the negative order Sobolev norm ‖ · ‖−`,Ω, ` ≥ 1, by

‖ u ‖−`,Ω = sup
φ∈C∞0 (Ω)

∫
Ω u(x)φ(x) dx
‖φ ‖`,Ω

.

Negative-order norms can be used to detect the oscillations of a function around
zero. For example, for Ω = [−1, 1], ` ≥ 1 and uN(x) = sin(2πN x), a simple
computation gives ‖ uN ‖−`,Ω = 1/(2πN)`, indicating that uN oscillates about zero
in a very regular manner.

Next, we describe the type of post-processing to be considered following Bramble
and Schatz [5]. We post-process the approximate solution by convolving it with a
kernel Kν,`

H (x) = Kν,`(x/H)/Hd which has to satisfy three properties. The first of
these is that Kν,` has compact support. The second is that it reproduces polynomials
p of degree ν − 1 by convolution, that is,

Kν,` ? p = p.

This is the type of kernel used by Mock and Lax [21]. The kernels used by Bramble
and Schatz [5], which we shall next describe, have the further property that they
are linear combinations of B-splines. Let χ be the characteristic function of the
interval (−1/2, 1/2) and let δ denote the Dirac distribution concentrated at x = 0.
Then, we define recursively the functions ψ(i) as

ψ(0) = δ, ψ(n+1) = ψ(n) ? χ, for n ≥ 0,

and, given an arbitrary multi-index α = (α1, . . . , αd) and y = (y1, . . . , yd) ∈ Rd, we
set

ψ(α)(y) = ψ(α1)(y1) · · ·ψ(αd)(yd).
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We also set 1 = (1, . . . , 1). The third and final property of the kernels considered
here is that they are of the form

(3.1) Kν,`1(y) =
∑
γ∈Zd

kν,`1γ ψ(`1)(y − γ),

where kν,`1γ ∈ R. Note that since the support of Kν,`1 has been assumed compact,
there are only finitely many nonzero coefficients kν,`1γ in this sum.

The imposition of these hypotheses is motivated by the following observations:
the compactness of the support of the convolution kernel is advantageous from
the computational point of view; the second property ensures that the accuracy of
order ν is not destroyed by post-processing; the third property allows us to express
derivatives of the convolution with the kernel in terms of simple difference quotients.
Indeed, it is very easy to verify that for multi-indices α and β such that βi ≥ αi
for i = 1, . . . , d, we have

(3.2) Dα(ψ(β)
H ? v) = ψ

(β−α)
H ? ∂αHv,

where ψ(α)
H (x) = ψ(α/H)/Hd,

∂αH := ∂α1
H,1 · · · ∂

αd
H,d and ∂H,jv(x) =

1
H

(
v(x+

1
2
H ej)− v(x − 1

2
H ej)

)
.

This fact can then be exploited in the finite element framework, as will be seen
later. We are now ready to state an approximation result which shows that local
smoothness of u on the one hand and negative-order norm estimates of divided
differences of the error u − U on the other lead to a local bound on u −Kν,`1

H ? U
in the L2-norm.

Theorem 3.1 (Bramble and Schatz [5]). Let ν and ` be two natural numbers.
Suppose, further, that Kν,`1

H (x) = Kν,`1(x/H)/Hd where Kν,`1 is a function of
compact support which reproduces polynomials of degree ν − 1 by convolution, and
which is the linear combination of B-splines, as in (3.1). Let U be a function in
L2(Ω1), where Ω1 is an open set in Rd, and let u be a function in Hν(Ω1). Let Ω0

be an open set in Rd such that Ω0 + 2 supp(Kν,`1
H ) b Ω1 for all H ≤ H0. Then, for

H ≤ H0, we have

‖ u−Kν,`1
H ? U ‖0,Ω0 ≤

Hν

ν!
C1 |u |ν,Ω1 + C1 C2

∑
|α|≤`

‖∂αH (u− U) ‖−`,Ω1 ,

where C1 =
∑

γ∈Zd | kν,`1γ | and C2 depends solely on Ω0, Ω1, d, ν, and `.

To illustrate the importance of this result, let us assume that there exist real
numbers µ ≥ 0 and a ∈ [0, `] such that, for all H ≤ H0,

(3.3)
∑
|α|≤`

‖∂αH (u− U) ‖−`,Ω1 ≤ C3 h
µH−a.
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Note that the number a measures how well it is possible to estimate the negative-
order norm of the divided differences of u−U . In the worst case, a = `; this is the
case treated by Mock and Lax [21]. In the finite element framework, however, it
is possible to take a to be different from `, as Bramble and Schatz [5] showed for
second-order elliptic problems.

Inserting the inequality (3.3) in the inequality of Theorem 3.1, we get

‖ u−Kν,`1
H ? U ‖0,Ω0 ≤

Hν

ν!
C1 |u |ν,Ω1 + C1 C2 C3 h

µH−a

≤ C1 max{|u |ν,Ω1/ν!, C2 C3} (Hν + hµH−a).

If we now define Ĥ to be the solution of the equation Hν = hµH−a, we obtain the
following result.

Corollary 3.2. Let the hypotheses of Theorem 3.1 hold, and suppose that (3.3) is
valid. Then, for Ĥ = hµ/(ν+a) ≤ H0, we have

‖ u−Kν,`1

Ĥ
? U ‖0,Ω0 ≤ C hθ µ,

where C = 2C1 max{|u |ν,Ω1/ν!, C2 C3} and θ = ν/(ν + a).

Note that in the worst possible case, that is when a = `, this implies that

‖ u−Kν,`1

Ĥ
? U ‖0,Ω0 ≤ C hθµ,

with θ = ν/(ν + `) < 1. The only possibility we then have for raising the order of
convergence is to hope that the function u is very smooth so that we can choose ν
large and positive. Unfortunately, even if this were actually possible, the support
of the convolution kernel would be contained in a cube whose diameter is of order
Ĥ = hµ/(ν+`) which converges to a quantity of order one as ν increases to infinity;
this in turn renders the evaluation of the convolution computationally inefficient.

On the other hand, in the best possible case (that is when a = 0), taking ν = µ

would permit choosing θ = 1, Ĥ = h and we would then have

‖ u−Kν,`1

Ĥ
? U ‖0,Ω0 ≤ C hµ.

In other words, for a = 0 we obtain the same order of convergence for u−Kν,`1
H ?U

in the local L2-norm as that of the local negative-order norm error estimate in (3.3).
Moreover, this is achieved by using a convolution kernel whose support is contained
in a cube whose diameter is of the order Ĥ = h only; this renders the evaluation of
the convolution a very fast computation. The examples shown in the Introduction
correspond to this case with ν = µ = 2k + 1, where k is the degree of polynomials
in the discontinuous Galerkin method.
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3.2. Negative-order norm error estimates for finite element methods.

3.2.1. The weak solution. As stated in the Introduction, we consider the following
Cauchy problem:

ut +
d∑
j=1

Ajuxj +A0u = 0, (x, t) ∈ Rd × (0, T ],(3.4)

u(x, 0) = u0(x), x ∈ Rd.(3.5)

To make the presentation of the ideas as simple as possible, we reduce inessential
technicalities by assuming that the matrices in the equation (3.4) are independent
of time and space and by taking the initial data to be 1-periodic in each of the
coordinate directions xi, i = 1, . . . , d, and we seek a solution to the above problem
which is 1-periodic in each coordinate direction.

We suppose that the system of equations (3.4) is strongly hyperbolic, that is,
there exists a family of real m×m matrices {S(ξ) : ξ ∈ Rd} and a constant K > 0
such that

S(ξ)
( d∑
j=1

Ajξj
)
S−1(ξ)

is a diagonal matrix for all ξ ∈ Rd, and

(3.6) sup
|ξ|=1

(
‖S(ξ) ‖ + ‖S−1(ξ) ‖

)
≤ K.

Letting I = (0, 1)d, the weak solution, u(x, t), of (3.4) satisfies

(3.7) (u, ϕ)I(t) = (u0, ϕ(0))I +

t∫
0

(u, ϕt +
d∑
j=1

A∗jϕxj −A∗0ϕ)I dτ

for all ϕ ∈ C∞([0, T ];H1
per(Rd,Rm)) and t ∈ [0, T ], where A∗j is the transpose of Aj

and in the above equation and below

(u, ϕ)J (t) =
∫
J

u(x, t)ϕ(x, t) dx.

Here, H1
per(Rd,Rm) denotes the Sobolev space of 1-periodic functions defined as

follows. Let C∞per(Rd,Rm) be the subset of C∞(Rd,Rm) of 1-periodic functions. We
then define H1

per(Rd,Rm) as the closure of C∞per(Rd,Rm) for the H1(I,Rm)-norm.
It follows from (3.6) that the problem (3.7) is well posed in

L2
per(Rd;Rm) =

{
f ∈ L2

loc(Rd;Rm) : f(x+ α) = f(x) for all x ∈ Rd, α ∈ Zd
}

with respect to the norm ‖ · ‖L2(I); see Theorem 6.3.2. on p. 219 of [14].

3.2.2. The finite element methods. Next, we describe the class of finite element
approximations to (3.4). It includes the standard Galerkin method, the Galerkin
method with artificial diffusion and the discontinuous Galerkin method. With slight
modifications we could have easily included, for example, the streamline-diffusion
method and the stabilized discontinuous Galerkin method; however, in order to
avoid unnecessary technical complications, we have chosen not to consider these.

Let Th = {K } be a regular triangulation of Rd, invariant under translations by
α ∈ Zd, whose elements K are open and have diameter hK less than or equal to
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Table 3.1. Examples of finite element methods.

Method Mh ⊂ C0 B(U, η)

Standard Galerkin (SG) yes (AU, η)I
SG with artificial-diffusion yes (AU, η)I + hγ (∇U,∇η)I , γ ≥ 1

Discontinuous Galerkin (DG) no (U,A∗η)h + 〈AU, η〉h

h. It will be assumed throughout that each K ∈ Th is contained either in I or in
Rd \ I. For a nonnegative integer k, we associate with the triangulation Th the
broken Sobolev space

Hk
per,h(Rd;Rm) = ΠK∈ThH

k(K;Rm) ∩ L2
per(Rd;Rm).

For k = 0, we shall write L2
per,h(Rd;Rm) = H0

per,h(Rd;Rm). We then consider two
finite element subspaces Mh and Nh of H1

per,h(Rd;Rm), and the broken L2 inner
product (·, ·)h defined on L2

per,h(Rd;Rm)× L2
per,h(Rd;Rm) by

(3.8) (W,χ)h =
∑

K∈Th,I

(W,χ)K ,

where Th,I = {K ∈ T : K ⊂ I}.
We define the finite element approximation U : [0, T ]→Mh as the solution to

(Ut(t), χ)h +B(U(t), χ) = 0, χ ∈ Nh,(3.9)

U(0) = Ph u0,(3.10)

where B(·, ·) is a bilinear form defined on Mh ×H1
per,h(Rd;Rm), and the operator

Ph : L2
per(Rd;Rm)→Mh is the orthogonal projection in the norm of L2(I).

In Table 3.1, we describe different choices of the form B that give rise to different
finite element methods; in each of these Mh = Nh, although this need not be the
case in general.

The operator A and the bilinear form 〈·, ·〉h that appear in Table 3.1 are defined
as

Aχ =
d∑
j=1

Ajχxj +A0χ,

A∗χ = −
d∑
j=1

A∗jχxj +A∗0χ,

〈AU, χ〉h =
∑

K∈Th,I

∑
e∈∂K

〈A · n Û, η〉e,

where A · n = A1n1 + · · · + Adnd, n = (n1, . . . , nd) is the unit outward normal
vector to K on e ⊂ ∂K, and Û is the numerical flux of the DG method defined
as follows. Given an element K and a face e ∈ ∂K, let us denote by Ke ∈ Th
the element sharing the edge e with K and denote by UK and UKe the traces of
U on e from K and Ke, respectively. We compute the m × m diagonal matrix
diag(λ1, . . . , λm) = S(n) (A · n)S−1(n) and set V = S−1(n)U and

V̂j =

{
(VK)j if λj > 0,
(VKe)j otherwise.
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The numerical flux is defined as

(3.11) Û = S(n) V̂ .

3.2.3. The negative-order error estimate. We now give sufficient conditions for the
finite element method which ensure that, for a given time T , our approximate
solution, U(T ), converges with high order in a negative-order norm over a given
subdomain Ω0 b I to the weak solution u(T ). Given that l ≥ 0, we wish to estimate

‖ u(T )− U(T )‖−`,Ω0 = sup
Φ∈C∞0 (Ω0)

(
u(T )− U(T ),Φ

)
‖Φ ‖`,Ω0

.

We begin by considering the solution to the dual problem: Find a function ϕ such
that ϕ(·, t) is 1-periodic in each coordinate direction for all t ∈ [0, T ) and

ϕt +
d∑
j=1

A∗j ϕxj −A∗0 ϕ = 0, in Rd × (0, T ),(3.12)

ϕ(x, T ) = Φ(x), x ∈ Rd,(3.13)

where Φ is an arbitrary function in C∞0 (Ω0).(
u(T )− U(T ),Φ

)
= (u, ϕ)(T )− (U,ϕ)(T )

= (u0, ϕ(0))− (U,ϕ)(T )

= (u0, ϕ(0))− (U,ϕ)(0) +
∫ T

0

d
dt

(U,ϕ) dτ

= (u0 − Ph u0, ϕ(0))−
∫ T

0

{
(Ut, ϕ) + (U,ϕt)

}
dτ.

Since, by (3.9), for χ : [0, T ]→ Nh,∫ T

0

(Ut, ϕ) dτ =
∫ T

0

(Ut, ϕ− χ) dτ +
∫ T

0

(Ut, χ) dτ

=
∫ T

0

(Ut, ϕ− χ) dτ −
∫ T

0

B(U, χ) dτ

=
∫ T

0

{
(Ut, ϕ− χ) +B(U,ϕ− χ)

}
dτ −

∫ T

0

B(U,ϕ) dτ,

we obtain that

(3.14) (u(T )− U(T ),Φ) = ΘM + ΘN + ΘC ,

where
ΘM = (u0 − Ph u0, ϕ(0)),

ΘN = −
∫ T

0

{
(Ut, ϕ− χ) +B(U,ϕ− χ)

}
dτ,

ΘC = −
∫ T

0

{
(U,ϕt)−B(U,ϕ)

}
dτ.

Next, we introduce some general assumptions onMh and Nh which will enable us
to estimate these three terms.

Let Ω0 b Ω1 ⊂ I, r ≥ 0, ` ≥ 1, and suppose that u0 ∈ L2
per(Rd;Rm) ∩

Hr(DΩ1;Rm), where DΩ1 denotes the domain of dependence for the set Ω1; see
Figure 3.1.
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Figure 3.1. Example of the domain of smoothness of u(T ), Ω0,
and of a domain Ω1 c Ω0 and its corresponding domain of depen-
dence DΩ1.

We adopt the following hypotheses.
(i) Approximation properties of Mh and Ph. There exist constants ρM ,

sM , with 0 ≤ ρM ≤ ` and 0 ≤ sM ≤ r, and AM such that, for each function
Φ in C∞0 (Ω0),

|(u0 − Phu0, ϕ(0))| ≤ AM hρM+sM ‖ u0 ‖r,DΩ1‖Φ ‖H` ,

where ϕ is the solution to the dual problem (3.12), (3.13) with final data
Φ.

(ii) Residual. Given that U is the solution to (3.9), (3.10), there exist con-
stants ρN , sN , with 0 ≤ ρN ≤ ` and 0 ≤ sN ≤ r, and AN , such that for
each function Φ in C∞0 (Ω0) there exists χ ∈ C1([0, T ];Nh) with∣∣∣∣ ∫ T

0

(Ut, ϕ− χ)h +B(U,ϕ− χ) dt
∣∣∣∣ ≤ AN hρN+sN ‖ u0 ‖r,DΩ1‖Φ ‖H` ,

where ϕ is the solution to the dual problem (3.12), (3.13) with final data
Φ.

(iii) Consistency. Given that U is the solution to (3.9), (3.10), there exist
constants sC ∈ (0,∞] and AC ∈ [0,∞) such that∣∣∣∣ ∫ T

0

(U,ϕt)h −B(U,ϕ) dt
∣∣∣∣ ≤ AC hsC ‖ u0 ‖r,DΩ1 ‖Φ ‖`,Ω0,

where ϕ is the solution to the dual problem (3.12), (3.13) with final data
Φ.

The next result is a trivial consequence of the decomposition (3.14) and condi-
tions (i)–(iii).

Theorem 3.3. Suppose that u0 ∈ L2
per(Rd;Rm)∩Hr(DΩ1;Rm), with Ω0 b Ω1 ⊂ I,

r ≥ 0, and assume that conditions (i)–(iii) hold. Then, for ` ≥ 1, we have

‖ (u− U)(T ) ‖−`,Ω0 ≤ C4 h
s ‖ u0 ‖r,DΩ1,

where s = min{ρM + sM , ρN + sN , sC} and C4 = AM + AN + AC .
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Table 3.2. The parameters of Theorem 3.3 for finite element
methods using piecewise polynomials of degree k.

parameter SG SG with AD DG

ρM min{k + 1, `} min{k + 1, `} min{k + 1, `}
sM min{k + 1, r} min{k + 1, r} min{k + 1, r}
ρN min{k, `} min{k, `} min{k + 1/2, `}
sN min{k, r} min{k, r} min{k + 1/2, r}
sC ∞ γ ∞

In Table 3.2 we display the parameters of the above result for some finite element
methods; for each of the methods listed we haveMh = Nh and have assumed that
Ω1 = I (so that DΩ1 = I also).

3.3. The error estimates. Now we combine the results obtained in the previous
subsections.

Theorem 3.4. Let u be the exact solution of problem (3.4), (3.5) and let U be
the approximation defined by (3.9), (3.10) for which conditions (i)–(iii) are valid.
Consider the convolution kernel Kν,`1

Ĥ
of Theorem 3.1. Let each of the components

of u(T ) be in Hν(Ω1) and let Ω0 be such that Ω0 + 2 supp(Kν,`1

Ĥ
) b Ω1. Then, for

general regular triangulations and Ĥ = hs/(ν+`) ≤ H0, we have

‖ u(T )−Kν,`1

Ĥ
? U(T ) ‖0,Ω0 ≤ C hθ s,

where θ, s and C are as in Theorem 3.3 with C3 = C4 ‖ u0‖r,DΩ1 and θ = ν/(ν+`).
Moreover, if the triangulation is translation invariant on a neighborhood of the
support of the solution of the adjoint equation (3.12), (3.13), then, for Ĥ = h,

‖ u(T )−Kν,`1

Ĥ
? U(T ) ‖0,Ω0 ≤ C hs,

C3 = C4 ‖ u0‖r+`,DΩ1 .

Proof. The first inequality is a direct consequence of Corollary 3.2 and Theorem
3.3. The second inequality also follows from the above results and from the fact
that if the triangulation is translation invariant in a neighborhood (of order Ĥ = h)
of the support of the solution of the adjoint problem, then we have

‖ ∂α
Ĥ

(u − U)(T ) ‖−`,Ω0 ≤ C4 h
s ‖ ∂α

Ĥ
u0 ‖r,DΩ1 .

This completes the proof. �

Table 3.3. Orders of convergence with piecewise polynomials of
degree k when the analytical solution u is in C([0, T ];Hν

per(I)).

triangulations ν SG SG with AD DG

general 0 θ k θ α θ (k + 1/2)
general 2 k + 2 θ k θ α θ (k + 1/2)

locally invariant 0 k α k + 1/2
locally invariant 2 k + 2 2 k α 2 k + 1
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Some important particular cases for which Ω1 = I (and consequently DΩ1 = I)
are collected in Table 3.3; in fact these are the estimates we can actually prove.
The case in which Ω1 6= I remains a challenging open problem.

4. Proofs

4.1. The approximation result. In this subsection, for the sake of completeness,
we sketch the proof of Theorem 3.1; we follow Bramble and Schatz [5].

Consider the quantity

ΘH = ‖ u−Kν,`1
H ? U ‖0,Ω0 ≤ ΘH,1 + ΘH,2,

where

ΘH,1 = ‖ u−Kν,`1
H ? u ‖0,Ω0 ,

ΘH,2 = ‖Kν,`1
H ? (u− U) ‖0,Ω0 .

To estimate ΘH,1, we denote by I the support of K(ν,`1), we label by T νu(y, ·) the
Taylor polynomial of degree ν−1 of u around y, and putRνu(y, ·) = u(·)−T νu(y, ·).
We then easily deduce that

u(x)−Kν,`1
H ? u(x) = Rνu(y, x)−

∫
I
Kν,`1(z)Rνu(y, x−H z) dz

by using the fact that the kernel Kν,`1
H reproduces polynomials of degree ν − 1 by

convolution. For y = x, the above expression becomes

u(x)−Kν,`1
H ? u(x) = −

∫
I
Kν,`1(z)Rνu(x, x−H z) dz,

and we obtain

ΘH,1 ≤ ‖Kν,`1 ‖L1(Rd) sup
z∈I
‖Rνu(·, · −H z) ‖0,Ω0

≤ Hν

ν!
‖Kν,`1 ‖L1(I) |u |ν,Ω0+H I .

On applying the triangle inequality to the expression of Kν,`1 given by (3.1), we
get

‖Kν,`1 ‖L1(I) ≤
∑
γ∈Zd

| kν,`1γ | ‖ψ`1−α(· − γ) ‖L1(Rd) =
∑
γ∈Zd

| kν,`1γ | = C1,

since ‖ψ`1−α(· − γ) ‖L1(Rd) = 1. This implies that

ΘH,1 ≤
Hν

ν!
C1 |u |ν,Ω0+H I ≤

Hν

ν!
C1 |u |ν,Ω1 .

Now, let us sketch the procedure to estimate Θh,2. Take a set Ω1/2 such that,
for all H ≤ H0,

Ω0 + supp(Kν,`
h ) ⊂ Ω1/2,

Ω1/2 + supp(Kν,`
h ) ⊂ Ω1.

Then, setting e(x) = u(x)− U(x), we get

ΘH,2 = ‖Kν,`1
H ? e ‖0,Ω0 ≤ C2

∑
|α|≤`

‖Dα(Kν,`1
H ? e) ‖−`,Ω1/2,
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where C2 depends solely on Ω0, Ω1/2, d, ν, and `, by Lemma 4.2 in Bramble and
Schatz [5]. This is the significant step that allows us to pass from the L2-norm to
a negative-order Sobolev norm.

Next, we exploit the fact that the kernelKν,`1
H is a linear combination of B-splines

given by (3.1); this is the only place in this proof where properties of B-splines are
used. Thus, by the property (3.2), we have that

Dα(Kν,`1
H ? e) = Kν,`1;α

H ? ∂αHe,

where

Kν,`1;α(y) =
∑
γ∈Zd

kν,`1γ ψ(`1−α)(y − γ).

This implies that

ΘH,2 ≤ C2

∑
|α|≤`

‖Kν,`1;α
H ? ∂αHe ‖−`,Ω1/2 ≤ C2

∑
|α|≤`

‖Kν,`1;α
H ‖L1(Rd)‖ ∂αHe ‖−`,Ω1 .

Finally, since ‖Kν,`1;α
H ‖L1(Rd) = ‖Kν,`1;α ‖L1(Rd) ≤ C1, we get

ΘH,2 ≤ C1 C2

∑
|α|≤`

‖ ∂αHe ‖−`,Ω1.

This completes the proof of Theorem 3.1.

4.2. The conditions (i)–(iii) for some finite element methods. In this sub-
section, we justify the results displayed in Table 3.2.

a. The SG method. Let us begin by considering property (i). For the L2-
projection, it is well known that ρM = min{k + 1, `} and that sM = min{k + 1, r}
for regular triangulations. Next, let us consider property (iii). A simple calculation
shows that we can take AC = 0; this allows us to take sC =∞.

For property (ii), we proceed as follows:

Θ =
∫ T

0

{(Ut, ϕ− χ)h +B(U,ϕ− χ)} dt

=
∫ T

0

{( (U − u)t +A(U − u), ϕ− χ)h} dt.

Taking χ as the L2-projection of ϕ, we get (ii) with ρN = min{k, `}, sN = min{k, r}
and Ω1 = I.

b. The SG with artificial diffusion. For this method, we only have to focus
on property (iii). We have,

Θ =
∫ T

0

{(U,ϕt)h −B(U,ϕ)} dt =
∫ T

0

hγ(∇U,∇ϕ) dt

≤ hγ ‖∇U ‖L2(0,T ;L2(I))‖∇ϕ ‖L2(0,T ;L2(I)).

This means that property (iii) is satisfied with sC = γ.
c. The DG method. For properties (i) and (iii), we proceed as in the two

methods discussed above. The verification of property (ii) requires a more delicate
argument. For a function W whose components are in H1

per,h(Rd;Rm), we set
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[[AW ]](x) = A · n+W+(x) + A · n−W−(x) for every x ∈ e, where W±(x) =
limz↓0W (x− z n±) and n± is orthogonal to the face e of the element K at x. With
this notation, we can write that

Θ =
∫ T

0

{(Ut, ϕ− χ)h +B(U,ϕ− χ)} dt

=
∫ T

0

{
(Ut +AU,ϕ− χ)h +

∑
e∈E
〈 [[AU ]], ϕ− χ〉e

}
dt,

where we obtained the last step after a simple integration by parts; by E we denote
the collection of faces e of the elements K of the triangulation Th,I .

Now, taking χ to be the L2-projection of ϕ onto Mh = Nh, we get

Θ =
∫ T

0

{∑
e∈E
〈 [[AU ]], ϕ− χ〉e

}
dt

≤
{∫ T

0

∑
e∈E
‖ [[AU ]] ‖2e,0 dt

}1/2{∫ T

0

∑
e∈E
‖ϕ− χ ‖2e,0 dt

}1/2

.

This implies that property (ii) is satisfied with sN = min{k + 1/2, `} for regular
triangulations. It remains to obtain an estimate of the first term on the right;
following Johnson and Pitkäranta [16] or Cockburn [7], it is easy to prove that (iii)
is satisfied with ρN = min{k + 1/2, r} and Ω1 = I.

5. Numerical experiments

In this section, we validate our theoretical results with an emphasis on the case
in which the doubling of the order of convergence is achieved. We also explore the
performance of the post-processing technique in situations not predicted by our
analysis; thus, we display the L∞-errors in all our experiments, include an example
dealing with a linear convection-diffusion equation and an example of a nonlinear
convection equation.

We consider the discontinuous Galerkin method with polynomials of degree k
and use a third order Runge-Kutta method to discretize in time; the time step ∆t
is chosen small enough so that spatial errors dominate. Results for P 1 to P 4 are
shown.

The L∞ error measures the maximum numerical error at the six Gaussian points
in each element for all elements. The L2-error is computed by the six-point Gaussian
rule in each element.

Example 5.1. A linear scalar convection equation with smooth solution on the
domain I = [0, 2π):

(5.1) ut + ux = 0, in I × (0, T ), u(x, 0) = sin(x) x ∈ I,
with periodic boundary conditions. The errors are computed at T = 12.5 which is
about two periods in time.

In Table 5.1, we show the numerical errors for this problem. We can clearly see
that both the L2- and L∞-error for P k-elements is of (k + 1)-th order before post-
processing and of at least (2k+1)-th order after post-processing. This is consistent
with our theoretical results.
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Table 5.1. Example 5.1, ut + ux = 0, smooth solution.

Before post-processing After post-processing

mesh L2-error order L∞-error order L2-error order L∞-error order

P 1

10 3.29E-02 — 5.81E-02 — 3.01E-02 — 4.22E-02 —

20 5.63E-03 2.55 1.06E-02 2.45 3.84E-03 2.97 5.44E-03 2.96

40 1.16E-03 2.28 2.89E-03 1.88 4.79E-04 3.00 6.78E-04 3.01

80 2.72E-04 2.09 8.08E-04 1.84 5.97E-05 3.00 8.45E-05 3.00

160 6.68E-05 2.03 2.13E-04 1.93 7.45E-06 3.00 1.05E-05 3.00

320 1.66E-05 2.01 5.45E-05 1.96 9.30E-07 3.00 1.32E-06 3.00

P 2

10 8.63E-04 — 2.86E-03 — 2.52E-04 — 3.57E-04 —

20 1.07E-04 3.01 3.69E-04 2.95 5.96E-06 5.40 8.41E-06 5.41

40 1.34E-05 3.00 4.63E-05 3.00 1.53E-07 5.29 2.16E-07 5.28

80 1.67E-06 3.00 5.78E-06 3.00 4.22E-09 5.18 5.97E-09 5.18

160 2.09E-07 3.00 7.23E-07 3.00 1.27E-10 5.06 1.80E-10 5.06

P 3

10 3.30E-05 — 9.59E-05 — 1.64E-05 — 2.31E-05 —

20 2.06E-06 4.00 6.07E-06 3.98 7.07E-08 7.85 1.00E-07 7.85

40 1.29E-07 4.00 3.80E-07 4.00 2.91E-10 7.92 4.15E-10 7.91

50 5.29E-08 4.00 1.56E-07 4.00 5.03E-11 7.87 7.24E-11 7.83

P 4

10 1.02E-06 — 2.30E-06 — 1.98E-06 — 2.81E-06 —

20 3.21E-08 5.00 7.30E-08 4.98 2.20E-09 9.82 3.11E-09 9.82

30 4.23E-09 5.00 9.66E-09 4.99 4.34E-11 9.68 6.66E-11 9.48

Figure 5.1. The errors before and after post-processing for 20
elements: P 2 (left) and P 3 (right).

In Figure 5.1 we plot the errors of the numerical solution before and after post-
processing for P 2 and P 3 with 20 elements. We can clearly see that the errors
before post-processing are highly oscillatory, and the post-processing gets rid of the
oscillation in the error and greatly reduces its magnitude.
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Figure 5.2. The errors in absolute value and in logarithmic scale,
for P 2 with N=10, 20, 40, 40, 80 and 160 elements: before post-
processing (left) and after post-processing (right).

In Figure 5.2, we plot the errors, in absolute value and in logarithmic scale,
of the numerical solution before and after post-processing for P 2, with 10, 20,
40, 80 and 160 elements. We can clearly see that the post-processed errors are less
oscillatory and much smaller in magnitude, and approximately third- and fifth-order
accuracy for the preprocessed and post-processed errors, respectively, measured by
the spacing between the errors when the number of elements doubles.

Example 5.2. A linear scalar convection-diffusion equation with smooth solution
on the domain I = [0, 2π):

(5.2) ut + ux = uxx, in I × (0, T ), u(x, 0) = sin(x), x ∈ I,

with periodic boundary conditions. The errors are computed at T = 2, using the
local discontinuous Galerkin method [9], with alternating left and right fluxes for
u and the auxiliary variable q which approximates ux (formula (2.9) in [9]).

Although not proven in this paper, we expect the same accuracy result to hold for
the post-processed solution as in Example 5.1. In Table 5.2, we show the results for
this problem. We can clearly see that the L∞-errors for P k-elements are of (k+1)-th
order before post-processing and of at least (2k+ 1)-th order after post-processing,
both for the solution u and for the auxiliary variable q which approximates ux. The
results for the L2-errors are similar and are not shown to save space.

Example 5.3. The same linear scalar convection equation (5.1) with the same
initial condition, except that now I = [0, 5). The solution now has a discontinuity
at x = 0 (or x = 5) and this discontinuity moves in time with the characteristic
speed 1. We compute the errors at T = 12.5, that is, after 2.5 periods in time. The
discontinuity at this time is located at x = 2.5. The errors shown in Table 5.3 are
calculated within the “smooth region” [0, 1] ∪ [4, 5], as distance 1.5 away from the
discontinuity, namely excluding the interval 1 < x < 4.
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Table 5.2. Example 5.2, ut + ux = uxx, smooth solution.

Before post-processing After post-processing

u q for ux u q for ux

mesh L2-error order L∞-error order L2-error order L∞-error order

P 1

10 6.74E-03 — 5.82E-23 — 1.19E-03 — 1.18E-03 —

20 1.82E-03 1.89 1.71E-03 1.77 1.34E-04 3.15 1.41E-04 3.07

40 4.68E-04 1.96 4.56E-04 1.91 1.56E-05 3.05 1.69E-05 3.06

80 1.19E-04 1.98 1.17E-04 1.96 1.46E-06 3.02 2.07E-06 3.03

160 3.00E-05 1.99 2.98E-05 1.98 2.32E-07 3.03 2.57E-07 3.01

320 7.52E-06 1.99 7.50E-06 1.99 2.87E-08 3.01 3.20E-08 3.01

P 2

10 3.97E-04 — 3.38E-04 — 2.93E-05 — 2.96E-05 —

20 5.01E-05 2.99 4.61E-05 2.87 5.43E-07 5.75 5.46E-07 5.76

40 6.25E-06 3.00 6.02E.06 2.94 1.04E-08 5.71 1.05E-08 5.70

80 7.83E-07 3.00 7.68E-07 2.97 2.19E-10 5.57 2.26E-10 5.54

160 9.78E-08 3.00 9.69E-08 2.99 5.31E-12 5.37 5.63E-12 5.33

P 3

10 1.30E-05 — 1.13E-05 — 3.09E-06 — 3.09E-06 —

20 8.23E-07 3.98 7.73E-07 3.86 1.32E-08 7.87 1.32E-08 7.87

40 5.14E-08 4.00 4.99E-08 3.95 5.31E-11 7.96 5.31E-11 7.96

P 4

10 3.11E-07 — 2.93E-07 — 3.79E-07 — 3.80E-07 —

20 9.89E-09 4.97 9.54E-09 4.94 4.19E-10 9.82 4.19E-10 9.82

30 1.30E-09 5.00 1.27E-09 4.98 7.11E-12 10.05 7.11E-12 10.05

Figure 5.3. The errors in absolute value and in logarithmic scale
for P 2 with N=10, 20, 40, 40, 80 and 160 elements: before post-
processing (left) and after post-processing (right).

The theory in this paper would only guarantee (k + 1)-th order accuracy for
P k-elements after post-processing since our estimates hold for DΩ1 = I only and
the initial condition displays a discontinuity. However, Table 5.3 shows that both
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Table 5.3. Example 5.3, ut + ux = 0, discontinuous solution,
errors in smooth regions

Before post-processing After post-processing

mesh L2-error order L∞-error order L2-error order L∞-error order

P 1

10 2.02E-02 — 6.46E-02 — 1.76E-02 — 2.80E-02 —

20 4.37E-03 2.21 1.21E-02 2.41 3.96E-03 2.15 1.18E-02 1.24

40 6.63E-04 2.72 1.89E-03 2.69 2.69E-04 3.88 6.77E-04 4.12

80 1.58E-04 2.07 5.24E-04 1.85 2.78E-05 3.27 4.31E-05 3.97

160 3.92E-05 2.01 1.36E-04 1.94 3.49E-06 3.00 5.31E-06 3.02

320 9.80E-06 2.00 3.47E-05 1.97 4.37E-07 3.00 6.63E-07 3.00

P 2

10 4.53E-03 — 1.08E-02 — 3.74E-03 — 1.15E-02 —

20 4.96E-04 3.19 1.98E-03 2.45 3.02E-04 3.63 1.07E-03 3.42

40 8.80E-06 5.82 2.51E-05 6.30 4.03E-06 6.23 2.74E-05 5.29

80 8.97E-07 3.29 2.91E-06 3.11 1.74E-09 11.18 1.32E-08 11.02

160 1.12E-07 3.00 3.64E-07 3.00 5.09E-11 5.09 8.75E-11 7.23

P 3

10 2.87E-03 — 1.24E-02 — 7.76E-04 — 1.81E-03 —

20 1.97E-04 3.87 1.03E-03 3.60 6.91E-06 6.81 2.92E-05 5.95

40 1.36E-06 7.18 7.21E-06 7.15 3.51E-08 7.62 1.88E-07 7.27

80 3.03E-09 8.81 1.01E-08 9.47 2.18E-11 10.65 6.89E-11 11.42

P 4

10 1.93E-03 — 6.32E-03 — 1.36E-03 — 2.91E-03 —

20 9.79E-05 4.30 5.42E-04 3.54 1.15E-07 13.53 8.37E-07 11.76

40 5.86E-07 7.39 4.70E-06 6.85 3.46E-11 11.70 2.11E-10 11.96

Figure 5.4. Sketch of the domain of smoothness Ω0 of the exact
solution, the domain Ω1 and its corresponding domain of depen-
dence DΩ1. The pattern between the discontinuities t = x and
t = x− 5 should be repeated periodically.

the L2-errors and the L∞-errors are still at least (2k + 1)-th order accurate for
P k-elements after post-processing. This indicates that it is reasonable to expect
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Table 5.4. Example 5.4, Burgers’ equation with smooth solution.

Before post-processing After post-processing

mesh L2-error order L∞-error order L2-error order L∞-error order

P 1

10 1.95E-02 — 8.87E-02 — 1.37E-02 — 3.99E-02 —

20 5.31E-03 1.88 2.77E-02 1.68 1.63E-03 3.07 6.47E-03 2.63

40 1.33E-03 2.00 7.55E-03 1.87 1.28E-04 3.67 5.55E-04 3.54

80 3.33E-04 1.99 1.95E-03 1.95 1.03E-05 3.63 4.17E-05 3.73

160 8.37E-05 1.99 4.99E-04 1.97 1.12E-06 3.20 4.21E-06 3.31

320 2.10E-05 2.00 1.26E-04 1.98 1.42E-07 2.98 5.69E-07 2.89

P 2

10 3.46E-03 — 1.93E-02 — 1.12E-02 — 3.37E-02 —

20 4.81E-04 2.85 3.57E-03 2.43 9.25E-04 3.59 3.47E-03 3.28

40 8.00E-05 2.59 6.22E-04 2.52 3.63E-05 4.67 1.58E-04 4.46

80 1.30E-05 2.62 1.20E-04 2.37 8.43E-07 5.43 3.93E-06 5.33

160 2.04E-06 2.67 1.98E-05 2.61 1.67E-08 5.66 8.51E-08 5.53

320 3.06E-07 2.73 3.02E-06 2.71 3.60E-10 5.53 1.85E-09 5.52

P 3

10 4.33E-04 — 2.24E-03 — 1.12E-02 — 3.35E-02 —

20 4.16E-05 3.38 2.00E-04 3.48 8.08E-04 3.80 3.03E-03 3.46

40 2.43E-06 4.10 1.74E-05 3.53 2.06E-05 5.30 9.42E-05 5.01

80 1.46E-07 4.06 1.04E-06 4.07 1.96E-07 6.72 1.01E-06 6.54

160 1.03E-08 3.82 6.72E-08 3.95 1.10E-09 7.47 5.94E-09 7.41

P 4

10 1.75E-04 — 8.25E-04 — 1.15E-02 — 3.36E-02 —

20 4.19E-06 5.39 2.45E-05 5.07 7.63E-04 3.91 2.82E-03 3.58

40 1.70E-07 4.62 1.04E-06 4.55 1.48E-05 5.69 6.82E-05 5.37

50 6.45E-08 4.36 4.40E-07 3.87 3.09E-06 7.03 1.52E-05 6.74

that a similar result with a domain DΩ1 excluding the discontinuity should hold,
see Figure 5.4.

In Figure 5.3 we plot the errors, in absolute value and in logarithmic scale, of the
numerical solution before and after post-processing for P 2, with 10, 20, 40, 80 and
160 elements. We can clearly see that the post-processed errors are less oscillatory
and much smaller in magnitude away from the discontinuity.

Example 5.4. A scalar nonlinear Burgers’ equation with continuous and discon-
tinuous solutions on the domain I = [0, 2π):

(5.3) ut +
(

1
2
u2

)
x

= 0, in I × (0, T ), u(x, 0) =
1
2

+ sin(x), x ∈ I,

with periodic boundary conditions. The errors at T = 0.5, when the solution is
still smooth, are given in Table 5.4. It seems that in general, post-processed errors
are still smaller, although the asymptotic orders seem to show up later than for the
linear case, as the mesh is refined. We remark that the theory in this paper does
not cover this nonlinear problem.

In Figure 5.5, we plot the errors of the numerical solution before and after post-
processing for P 2 and P 3 with 20 elements. From Table 5.4 we can see that in both
situations the errors after post-processing are actually larger than the errors before
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Figure 5.5. The errors before and after post-processing for the
smooth solution of Burgers equation and 20 elements: P 2 (left)
and P 3 (right).

Figure 5.6. The errors in absolute value and in logarithmic scale,
for P 2 with N=20, 40, 40, 80, 160 and 320 elements. Smooth
solution of Burgers equation. Before post-processing (left) and
after post-processing (right).

post-processing. Note in Figure 5.5 that near the middle region, the oscillations in
the errors are not “uniform”, apparently due to nonlinear effects, hence the post-
processing actually gives larger errors. Fortunately, for a larger number of elements,
the post-processing begins to be effective and the errors after post-processing do
become smaller; see Table 5.4 and Figure 5.6.

In Figure 5.6 we plot the errors, in absolute value and in logarithmic scale, of
the numerical solution before and after post-processing for P 2, with 10, 20, 40,
80, 160 and 320 elements. We can clearly see that the post-processed errors are
less oscillatory and much smaller in magnitude, especially for a large number of
elements. However, notice that due to nonlinear effects not all oscillations in the
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Table 5.5. Example 5.4, Burgers’ equation with discontinuous solution.

Before post-processing After post-processing

mesh L2-error order L∞-error order L2-error order L∞-error order

P 1

10 8.70E-03 — 3.56E-02 — 6.79E-03 — 1.99E-02 —

20 3.05E-04 4.83 1.47E-03 4.60 2.23E-04 4.93 8.61E-04 4.53

40 1.70E-05 4.16 8.14E-05 4.18 1.09E-05 4.36 2.25E-05 5.26

80 3.71E-06 2.20 2.07E-05 1.97 1.37E-06 2.99 2.86E-06 2.97

160 8.65E-07 2.10 4.67E-06 2.15 1.63E-07 3.07 3.43E-07 3.06

320 2.17E-07 2.00 1.19E-06 1.97 2.05E-08 3.00 4.31E-08 2.99

P 2

10 6.26E-03 — 3.29E-02 — 1.57E-03 — 7.05E-03 —

20 2.77E-04 4.50 1.44E-03 4.52 5.47E-05 4.84 1.52E-04 5.54

40 2.03E-05 3.77 1.68E-04 3.10 6.88E-06 2.99 2.62E-05 2.53

80 2.30E-06 3.14 2.17E-05 2.95 8.39E-07 3.03 4.61E-06 2.51

160 4.23E-07 2.44 4.75E-06 2.19 1.16E-07 2.86 7.95E-07 2.54

320 6.12E-08 2.79 7.77E-07 2.61 1.41E-08 3.04 1.29E-07 2.62

Figure 5.7. The errors in absolute value and in logarithmic scale,
for P 2 with N=10, 20, 40, 40, 80, 160 and 320 elements. Discon-
tinuous solution of Burgers equation. Before post-processing (left)
and after post-processing (right).

errors have been removed by the post-processing, especially for a large number of
elements.

Next, we compute the solution at T = 2, that is, after the shock has developed.
We measure the errors on the smooth region 0.5π away from the discontinuity and
show the results in Table 5.5. The codes ran stably only for P 1 and P 2 hence only
these two cases are shown.

In order to stabilize the algorithm in the presence of shocks, we apply a TVB
(total variation bounded) limiter with M = 3, see [8]. This limiter has no effect on
the numerical solution at T = 0.5 when the solution is still smooth, but allows the
scheme to run stably for P 3 and P 4 after the shock develops. We again measure
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Table 5.6. Example 5.4, Burgers’ equation with discontinuous
solution. TVB limiters.

Before post-processing After post-processing

mesh L2-error order L∞-error order L2-error order L∞-error order

P 1

10 1.26E-03 — 4.44E-03 — 1.02E-03 — 2.28E-03 —

20 1.16E-04 3.44 4.38E-04 3.34 1.01E-04 3.33 1.94E-04 3.55

40 1.72E-05 2.76 8.33E-05 2.40 1.09E-05 3.22 2.26E-05 3.11

80 3.72E-06 2.20 2.08E-05 2.00 1.37E-06 2.99 2.87E-06 2.98

160 8.73E-07 2.09 4.75E-06 2.13 1.63E-07 3.07 3.44E-07 3.06

320 2.17E-07 2.01 1.19E-06 2.00 2.05E-08 3.00 4.32E-08 2.99

P 2

10 1.03E-02 — 5.83E-02 — 1.99E-03 — 7.66E-03 —

20 4.22E-04 4.60 3.36E-03 4.12 5.32E-05 5.22 1.50E-04 5.68

40 2.23E-05 4.24 1.99E-04 4.08 6.87E-06 2.95 2.53E-05 2.53

80 2.29E-06 3.28 2.16E-05 3.20 8.39E-07 3.03 4.61E-06 2.50

160 4.21E-07 2.44 4.72E-06 2.19 1.16E-07 2.86 7.95E-07 2.54

320 6.10E-08 2.79 7.75E-07 2.61 1.41E-08 3.04 1.29E-07 2.62

P 3

10 9.98E-04 — 6.64E-03 — 3.45E-03 — 1.35E-02 —

20 1.47E-04 2.76 1.38E-03 2.20 9.35E-06 8.52 5.18E-05 8.03

40 4.92E-07 8.22 5.43E-06 7.99 2.92E-08 8.32 2.08E-07 7.96

80 8.58E-10 9.16 1.43E-08 8.57 3.71E-10 6.30 8.73E-10 7.90

P 4

10 3.86E-01 — 9.90E-01 — 2.28E-01 — 3.78E-01 —

20 1.08E-01 1.84 2.16E-01 2.20 5.28E-02 2.11 1.34E-01 1.50

40 1.89E-03 5.83 2.25E-02 3.26 3.88E-04 7.09 3.97E-03 5.07

80 8.08E-08 14.52 6.11E-07 15.17 1.46E-08 14.70 7.42E-08 15.71

the errors on the smooth region 0.5π away from the discontinuity and show the
result in Table 5.6.

In Figure 5.7 we plot the errors, in absolute value and in logarithmic scale, of
the numerical solution before and after post-processing for P 2 with a TVB limiter,
at t = 2, with 10, 20, 40, 80, 160 and 320 elements. We can clearly see that the
post-processed errors are less oscillatory and much smaller in magnitude, especially
for a large number of elements, away from the discontinuity. Again, notice that not
all oscillations in the errors have been removed by the post-processing, especially
for a large number of elements, due to nonlinear effects.

Example 5.5. A linear system with smooth solution in the domain I = [0, 2π):

(5.4)

{
ut + vx = 0
vt + ux = 0

in I × (0, T ),

{
u(x, 0) = sin(x)
v(x, 0) = 0

x ∈ I,

with periodic boundary conditions. The errors are computed at T = 12.5 which is
about two periods in time.

In Table 5.7, we show the results for this problem. The errors are the combined
ones of u and v. We can clearly see that both L2- and L∞-errors for P k-elements
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Table 5.7. Example 5.5, linear system with smooth solution.

Before post-processing After post-processing

mesh L2-error order L∞-error order L2-error order L∞-error order

P 1

10 2.33E-02 — 5.20E-02 — 2.13E-02 — 4.16E-02 —

20 3.98E-03 2.55 8.55E-03 2.60 2.72E-03 2.97 5.36E-03 2.96

40 8.20E-04 2.28 1.89E-03 2.18 3.39E-04 3.00 6.74E-04 2.99

80 1.92E-04 2.09 4.77E-04 1.98 4.23E-05 3.00 8.43E-05 3.00

160 4.72E-05 2.03 1.20E-04 2.00 5.28E-06 3.00 1.05E-05 3.00

320 1.17E-05 2.01 2.99E-05 2.00 6.59E-07 3.00 1.31E-06 3.00

P 2

10 6.10E-04 — 1.67E-03 — 1.78E-04 — 3.53E-04 —

20 7.57E-05 3.01 2.08E-04 3.00 4.22E-06 5.40 8.42E-06 5.39

40 9.46E-06 3.00 2.60E-05 3.00 1.09E-07 5.28 2.17E-07 5.28

80 1.18E-06 3.00 3.24E-06 3.00 3.11E-09 5.13 6.20E-09 5.13

160 1.48E-07 3.00 4.06E-07 3.00 8.95E-11 5.12 1.77E-10 5.13

P 3

10 2.33E-05 — 5.73E-05 — 1.16E-05 — 2.30E-05 —

20 1.46E-06 4.00 3.61E-06 3.99 5.00E-08 7.85 9.98E-08 7.85

40 9.13E-08 4.00 2.27E-07 3.99 2.13E-10 7.88 4.25E-10 7.88

50 3.74E-08 4.00 9.29E-08 4.01 3.94E-11 7.56 7.84E-11 7.57

P 4

10 7.24E-07 — 1.37E-06 — 1.40E-06 — 2.79E-06 —

20 2.27E-08 5.00 4.33E-08 4.99 1.56E-09 9.82 3.11E-09 9.81

30 2.99E-09 5.00 5.72E-09 4.99 3.06E-11 9.69 6.16E-11 9.67

are (k+1)-th order before post-processing and at least (2k+1)-th order after post-
processing. In fact, the errors are very similar to the scalar case in Example 5.1.
This is consistent with our theoretical results.

Notice that this example and the next one with a discontinuous solution for
linear systems indicate that the method is very suitable for long time simulation
of linear systems as the post-processing needs to be performed only at the final
time. Examples include aeroacoustic problems when linear Euler equations must
be solved for a long time to propagate the pressure waves.

Example 5.6. The same linear system (5.4) with the same initial condition, except
that now 0 ≤ x < 5 and the boundary condition is 5-periodic. The solution now has
a discontinuity at x = 0 (or x = 5) and this discontinuity moves in time with the
characteristic speeds ±1. We compute the errors at t = 12.5, after 2.5 periods in
time. The two discontinuities at this time are both located at x = 2.5. The errors
shown in Table 5.8 are calculated within the “smooth region” that lies a distance
1.5 away from the discontinuities, namely excluding the interval 1 < x < 4.

The theory in this paper would only guarantee (k+ 1)-th order accuracy for P k-
elements after post-processing, since when we take DΩ1 = I, the initial condition
has a discontinuity in this set. However, Table 5.8 shows that both the L2-errors
and the L∞-errors are still at least (2k+ 1)-th order accurate for P k-elements after
post-processing.
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Table 5.8. Example 5.6, linear system with discontinuous solution.

Before post-processing After post-processing

mesh L2-error order L∞-error order L2-error order L∞-error order

P 1

10 1.49E-02 — 4.00E-02 — 1.29E-02 — 4.27E-02 —

20 3.19E-03 2.22 9.35E-03 2.10 2.79E-03 2.21 7.69E-03 2.47

40 4.76E-04 2.74 1.37E-03 2.78 1.85E-04 3.91 4.82E-04 3.99

80 1.13E-04 2.08 3.04E-04 2.17 1.99E-05 3.22 4.28E-05 3.49

160 2.78E-05 2.02 7.59E-05 2.00 2.48E-06 3.00 5.31E-06 3.01

320 6.94E-06 2.00 1.90E-05 2.00 3.09E-07 3.00 6.63E-07 3.00

P 2

10 3.41E-03 — 6.93E-03 — 2.65E-03 — 9.29E-03 —

20 3.58E-04 3.25 1.30E-03 2.42 2.22E-04 3.58 6.40E-04 3.86

40 6.30E-06 5.83 2.42E-05 5.74 2.85E-06 6.28 1.39E-05 5.52

80 6.33E-07 3.32 1.64E-06 3.88 1.23E-09 11.17 7.52E-09 10.86

160 7.91E-08 3.00 2.05E-07 3.00 3.34E-11 5.20 5.54E-11 7.08

P 3

10 2.03E-03 — 6.43E-03 — 5.35E-04 — 1.77E-03 —

20 1.40E-04 3.86 5.41E-04 3.57 4.92E-06 6.76 2.27E-05 6.28

40 9.66E-07 7.18 3.64E-06 7.21 2.50E-08 7.62 9.60E-08 7.89

80 2.14E-09 8.82 6.00E-09 9.25 1.34E-11 10.87 4.89E-11 10.94

P 4

10 1.38E-03 — 3.26E-03 — 9.61E-04 — 2.90E-03 —

20 6.92E-05 4.32 2.72E-04 3.58 8.09E-08 13.54 6.31E-07 12.17

40 4.14E-07 7.39 2.36E-06 6.85 2.42E-11 11.71 1.03E-10 12.58

In fact, the behavior of the errors is very similar to that observed in the scalar case
in Example 5.3. This is not really surprising since our linear system is equivalent
to the following two decoupled scalar equations:{

(u − v)t − (u− v)x = 0
(u + v)t + (u+ v)x = 0

in I × (0, T ),

{
(u − v)(x, 0) = sin(x)
(u + v)(x, 0) = sin(x)

x ∈ I.

As a consequence, the domain of dependence DΩ1 does not include the discontinuity
of the initial condition; see Figure 5.8 (top).

On the other hand, it is interesting to point out that this doubling of the order
of accuracy does not take place for the problem

(5.5)

{
ut − ux = v

vt + vx = −u
in I × (0, T ),

{
u(x, 0) = sin(x)
v(x, 0) = 0

x ∈ I,

with periodic boundary conditions, since now the two scalar equations associated
with the diagonalization of the system are coupled through zero-order terms; as a
consequence, the domain of dependence DΩ1 always includes the discontinuity of
the initial condition; see Figure 5.8 (bottom). This is the example treated in the
early work of Majda and Osher and [20] and Majda, McDonough and Osher [19].
Due to this lack of regularity of the initial condition on DΩ1, post-processing with
a kernel of support of order h does not yield any significant improvement; a kernel
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Figure 5.8. The domain of smoothness of u(T ), Ω0, the domain
Ω1 c Ω0 and its corresponding domain of dependence DΩ1 for
the system (5.4) (top) and the system (5.5) (bottom). Note the
discontinuity curves t = |x |.

of support of order almost one is required, as predicted by our main theorem; see
also Mock and Lax [21].

6. Extensions and concluding remarks

In this paper, we have shown how to enhance the approximation given by a finite
element method for linear hyperbolic equations by applying simple post-processing
at the very end of the computations. Our theoretical results can be easily extended
to the case in which the matrices Aj , j = 0, . . . , d, are very smooth functions of
(x, t). To do that, it is enough to mimic the induction argument presented by
Bramble and Schatz in [5].

The role of negative-order error estimates is crucial since it is the analytical tool
that captures the ocillatory nature of the error. For these negative-order norms of
the error, upper bounds were obtained which depend on a global norm of the initial
data. Our numerical results suggest, however, that they should depend only on a
local norm of the initial data. In fact, a result of this type was obtained in 1998
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for finite difference schemes by Engquist and Sjögreen [11]. To obtain such a result
for, say, the discontinuous Galerkin method is a challenging open problem.

Finally, let us end by pointing out that our numerical results seem to indicate
that the post-processing has a positive impact on the quality of the approximate
solution even if the problem is nonlinear. A theoretical analysis of this case is yet
another important open problem.
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