About the sharpness of the stability estimates in the Kreiss matrix theorem
HTML articles powered by AMS MathViewer
- by M. N. Spijker, S. Tracogna and B. D. Welfert;
- Math. Comp. 72 (2003), 697-713
- DOI: https://doi.org/10.1090/S0025-5718-02-01472-2
- Published electronically: October 29, 2002
- PDF | Request permission
Abstract:
One of the conditions in the Kreiss matrix theorem involves the resolvent of the matrices $A$ under consideration. This so-called resolvent condition is known to imply, for all $n\ge 1$, the upper bounds $\|A^n\|\le eK(N+1)$ and $\|A^n\|\le eK(n+1)$. Here $\|\cdot \|$ is the spectral norm, $K$ is the constant occurring in the resolvent condition, and the order of $A$ is equal to $N+1\ge 1$. It is a long-standing problem whether these upper bounds can be sharpened, for all fixed $K>1$, to bounds in which the right-hand members grow much slower than linearly with $N+1$ and with $n+1$, respectively. In this paper it is shown that such a sharpening is impossible. The following result is proved: for each $\epsilon >0$, there are fixed values $C>0, K>1$ and a sequence of $(N+1)\times (N+1)$ matrices $A_N$, satisfying the resolvent condition, such that $\|(A_N)^n\|\ge C(N+ 1)^{1-\epsilon }$ $=C(n+1)^{1-\epsilon }$ for $N=n=1,2,3,\ldots$. The result proved in this paper is also relevant to matrices $A$ whose $\epsilon$-pseudospectra lie at a distance not exceeding $K\epsilon$ from the unit disk for all $\epsilon >0$.References
- Nguyen Minh Chuong and Nguyen Van Co, An iteration scheme for non-expansive mappings in metric spaces of hyperbolic type, Vietnam J. Math. 28 (2000), no. 3, 257–262. MR 1812973
- Borovykh N., Spijker M.N. (2001): Bounding partial sums of Fourier series in weighted $L^2$-norms, with applications to matrix analysis, to appear in J. Comput. Appl. Math.
- J. L. M. van Dorsselaer, J. F. B. M. Kraaijevanger, and M. N. Spijker, Linear stability analysis in the numerical solution of initial value problems, Acta numerica, 1993, Acta Numer., Cambridge Univ. Press, Cambridge, 1993, pp. 199–237. MR 1224683, DOI 10.1017/S0962492900002361
- M. B. Giles, On the stability and convergence of discretization of initial value p.d.e.s, IMA J. Numer. Anal. 17 (1997), no. 4, 563–576. MR 1476339, DOI 10.1093/imanum/17.4.563
- J. F. B. M. Kraaijevanger, Two counterexamples related to the Kreiss matrix theorem, BIT 34 (1994), no. 1, 113–119. MR 1429692, DOI 10.1007/BF01935020
- Lawrence M. Graves, The Weierstrass condition for multiple integral variation problems, Duke Math. J. 5 (1939), 656–660. MR 99
- Randall J. LeVeque and Lloyd N. Trefethen, On the resolvent condition in the Kreiss matrix theorem, BIT 24 (1984), no. 4, 584–591. MR 764830, DOI 10.1007/BF01934916
- Christian Lubich and Olavi Nevanlinna, On resolvent conditions and stability estimates, BIT 31 (1991), no. 2, 293–313. MR 1112225, DOI 10.1007/BF01931289
- C. A. McCarthy and J. Schwartz, On the norm of a finite Boolean algebra of projections, and applications to theorems of Kreiss and Morton, Comm. Pure Appl. Math. 18 (1965), 191–201. MR 180867, DOI 10.1002/cpa.3160180118
- Olavi Nevanlinna, On the growth of the resolvent operators for power bounded operators, Linear operators (Warsaw, 1994) Banach Center Publ., vol. 38, Polish Acad. Sci. Inst. Math., Warsaw, 1997, pp. 247–264. MR 1457011
- Satish C. Reddy and Lloyd N. Trefethen, Lax-stability of fully discrete spectral methods via stability regions and pseudo-eigenvalues, Comput. Methods Appl. Mech. Engrg. 80 (1990), no. 1-3, 147–164. Spectral and high order methods for partial differential equations (Como, 1989). MR 1067947, DOI 10.1016/0045-7825(90)90019-I
- Satish C. Reddy and Lloyd N. Trefethen, Stability of the method of lines, Numer. Math. 62 (1992), no. 2, 235–267. MR 1165912, DOI 10.1007/BF01396228
- Jørgen Sand, On some stability bounds subject to Hille-Yosida resolvent conditions, BIT 36 (1996), no. 2, 378–386. MR 1432254, DOI 10.1007/BF01731989
- Allen L. Shields, On Möbius bounded operators, Acta Sci. Math. (Szeged) 40 (1978), no. 3-4, 371–374. MR 515218
- M. N. Spijker, On a conjecture by LeVeque and Trefethen related to the Kreiss matrix theorem, BIT 31 (1991), no. 3, 551–555. MR 1127492, DOI 10.1007/BF01933268
- M. N. Spijker and F. A. J. Straetemans, Stability estimates for families of matrices of nonuniformly bounded order, Linear Algebra Appl. 239 (1996), 77–102. MR 1384915, DOI 10.1016/S0024-3795(96)90004-X
- M. N. Spijker and F. A. J. Straetemans, Error growth analysis via stability regions for discretizations of initial value problems, BIT 37 (1997), no. 2, 442–464. MR 1450970, DOI 10.1007/BF02510222
- John C. Strikwerda and Bruce A. Wade, Cesàro means and the Kreiss matrix theorem, Linear Algebra Appl. 145 (1991), 89–106. MR 1080678, DOI 10.1016/0024-3795(91)90289-9
- John C. Strikwerda and Bruce A. Wade, A survey of the Kreiss matrix theorem for power bounded families of matrices and its extensions, Linear operators (Warsaw, 1994) Banach Center Publ., vol. 38, Polish Acad. Sci. Inst. Math., Warsaw, 1997, pp. 339–360. MR 1457017
- Kim-Chuan Toh and Lloyd N. Trefethen, The Kreiss matrix theorem on a general complex domain, SIAM J. Matrix Anal. Appl. 21 (1999), no. 1, 145–165. MR 1709731, DOI 10.1137/S0895479897324020
- Elias Wegert and Lloyd N. Trefethen, From the Buffon needle problem to the Kreiss matrix theorem, Amer. Math. Monthly 101 (1994), no. 2, 132–139. MR 1259826, DOI 10.2307/2324361
- A. Zygmund, Trigonometric series. Vol. I, II, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1988. Reprint of the 1979 edition. MR 933759
Bibliographic Information
- M. N. Spijker
- Affiliation: Department of Mathematics, Rijksuniversiteit Leiden, P.O. Box 9512, NL 2300 RA Leiden, The Netherlands
- Email: spijker@math.leidenuniv.nl
- S. Tracogna
- Affiliation: Department of Mathematics, Arizona State University, Tempe, Arizona 85287-1804
- Email: tracogna@math.la.asu.edu
- B. D. Welfert
- Affiliation: Department of Mathematics, Arizona State University, Tempe, Arizona 85287-1804
- Email: bdw@math.asu.edu
- Received by editor(s): May 12, 1998
- Published electronically: October 29, 2002
- © Copyright 2002 American Mathematical Society
- Journal: Math. Comp. 72 (2003), 697-713
- MSC (2000): Primary 15A60, 65M12
- DOI: https://doi.org/10.1090/S0025-5718-02-01472-2
- MathSciNet review: 1954963